FAR 7 — FRACTIONAL THINKING

Addition and subtraction of fractions

@whisto maths

What do I need to be able to do?

By the end of this unit you should be able to:

- Convert between mixed numbers and fractions
- Odd/Subtract unit fractions (same denominator)
- Odd/Subtract fractions (same denominator)
- Odd/Subtract fractions from integers
- Use equivalent fractions
- Odd/Subtract any fractions
- Odd/Subtract improper fractions and mixed
- Use fractions in algebraic contexts

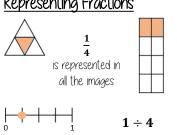
Keywords

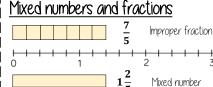
Numerator: the number above the line on a fraction. The top number. Represents how many parts are taken.

Denominator: the number below the line on a fraction. The number represent the total number of parts

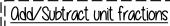
Equivalent: of equal value

Mixed numbers: a number with an integer and a proper fraction


Improper fractions: a fraction with a bigger numerator than denominator

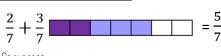

Substitute: replace a variable with a numerical value

Place value: the value of a digit depending on its place in a number. In our decimal number system, each place is

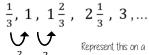

10 times bigger than the place to its right

Representing Fractions

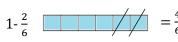
$$\frac{1}{-} + \frac{1}{-}$$

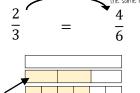


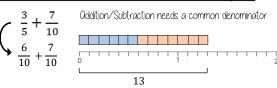
$$=\frac{2}{4}$$


denominator have

With the same denominator ONLY the numerator is added


Odd/Subtract fractions


Same denominator | | Odd/Subtract from integers

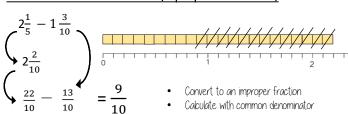


The denominator indicates the numbe of parts a whole is made up of

Equivalent fractions

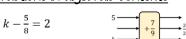

Odd/Subtraction fractions (common multiples)

Odd/Subtraction any fractions


Fractions can be

bigger than a whole

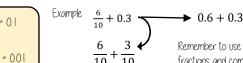
Use equivalent fractions to find a common multiple for both denominators


Odd/Subtraction fractions (improper and mixed)

Partitioning method

$$2\frac{1}{5} - 1\frac{3}{10} = 2\frac{2}{10} - 1\frac{3}{10} = 2\frac{2}{10} - 1 - \frac{3}{10} = 1\frac{2}{10} - \frac{3}{10} = \frac{9}{10}$$

Fractions in algebraic contexts


Apply inverse operations

Form expressions with fractions

Substitution

 $p = 5 \ m = 2$

Fractions and decimals

Remember to use equivalent fractions and common denominators