P1: Energy - Knowledge organisers | 1.01 | | | | |------------------------------------|--|--|--| | 1 Chemical store | Energy stored as chemicals waiting to react . | | | | 2 Kinetic store | Energy stored in objects that move . | | | | 3 Gravitational
Potential store | Energy stored in objects raised up against the force of gravity . | | | | 4 Elastic Potential
store | Energy stored in an object that have been stretched . | | | | 5 Internal store | Energy stored in the movement of particles. It is a combination of the kinetic energy of the particles and the potential energy of particles that are apart from each other. Can be modified by heating or cooling . | | | | 6 Nuclear store | Energy stored in the nuclei of atoms that can fuse (nuclear fusion) or split (nuclear fission). | | | | 7 Magnetic store | Energy stored in magnets that are attracting or repelling . | | | | 8 Electrostatic
store | Energy stored in electric charges that are attracting or repelling . | | | | 9 Mechanical
transfer | Energy transferred when a force moves through a distance. | | | | 10 Electrical trans-
fer | Energy transferred when a charge moves . | | | | 11 Radiation trans-
fer | Energy transferred by electromagnetic radiation . | | | | 12 Heat transfer | Energy transferred when an object is heated . | | | | Section 2: Equations to learn | | | | | | | |---|---|----------------------------|---|--|--|--| | Calculation | Equation | Symbol equation | Units | | | | | 13 Kinetic energy
store | Kinetic energy = 0.5 x mass x ve-
locity ² | $E_k = 0.5 \text{ m } v^2$ | Energy – Joules (J)
Mass – kilograms (kg)
Velocity – metres per
second (m/s) | | | | | 14 Gravitational
potential energy
store | Gravitational potential energy =
mass x gravitational field strength
x height | E _p = m g h | Energy – Joules (J)
Mass – kilograms (kg)
Gravitational field
strength – Newtons
per kilogram (N/kg)
Height – metres (m) | | | | | 15 Power | Power =energy transferred ÷ time | P = <u>E</u>
† | Power – Watts (W)
Energy transferred –
Joules (J)
Time – seconds (s) | | | | | 16 Power | Power = work done ÷ time | P = <u>W</u>
† | Power – Watts (W)
Work done – Joules (J)
Time – seconds (s) | | | | | 17 Efficiency | Efficiency = <u>useful energy output</u>
total energy input | | Energy – Joules (J) | | | | | 18 Efficiency | Efficiency = <u>useful power output</u>
total power input | | Power – Watts (W) | | | | | Section 3: Energy Resources | | | | | | | |-----------------------------|-----------------|---------------------------------------|--|---|--|--| | Resource | Renew-
able? | Uses | Advantages | Disadvantages | | | | 19 Fossil Fuels | No | Electricity,
transport,
heating | Reliable – electricity can
be generated all of the
time.
Relatively cheap way of
generating electricity. | Produces carbon dioxide , a greenhouse gas that causes global warming . Can produce sulphur dioxide , a gas that causes acid rain . | | | | 20 Nuclear Fuel | No | Electricity | Produces no carbon dioxide when generating electricity. Reliable – electricity can be generated all of the time. | Produces nuclear waste that remains radioactive for thousands of years. Expensive to build and decommission power stations. | | | | 21 Bio Fuel | Yes | Heating,
electricity | Carbon neutral. Reliable – electricity can be generated all of the time. | Production of fuel may damage ecosystems and create a monoculture. | | | | 22 Wind | Yes | Electricity | No CO₂ produced while generating electricity. | Unreliable – may not produce electricity during low wind. Expensive to construct. | | | | 23
Hydroelectricity | Yes | Electricity | No CO ₂ produced while generating electricity. | Blocks rivers stopping fish migration. Unreliable – may not produce electricity during droughts. | | | | 24 Geothermal | Yes | Electricity,
heating | Does not damage ecosystems. Reliable source of electricity generation. | Fluids drawn from ground may contain greenhouse gases such as CO ₂ and methane. These contribute to global warming. | | | | 25 Tidal | Yes | Electricity | No CO₂ produced while generating electricity. | Unreliable – tides vary.
May damage tidal ecosystem e.g. mud-
flats. | | | | 26 Waves | Yes | Electricity | No CO₂ produced while generating electricity. | Unreliable – may not produce electricity during calm seas. | | | | 27 Solar | Yes | Electricity,
heating | No CO ₂ produced while generating electricity. | Unreliable – does not produce electricity at night. Limited production on cloudy days. Expensive to construct. | | | | Section 4: Key terms | | | | | |---------------------------|--|--|--|--| | 28 Dissipation | Energy becoming spread out instead of in a concentrated store. "Wasted" energy. | | | | | 29 Lubrication | A method of reducing unwanted energy transfers by application of a lubricant (e.g. oil) to reduce friction . Occurs in machines. | | | | | 30 Insulation | A method of reducing energy transfers by the use of insulators (non-conductive material). Occurs in buildings. | | | | | 31 Conservation of energy | The law that states that energy cannot be created or destroyed. | | | | | 32 Specific heat capacity | The energy needed to raise 1kg of a material by 1°C . | | | |