

The Three States of Matter

- The three states of matter are solids, liquids and gases
- 2. Solids, liquids and gases have different physical properties:

Property	Solid	Liquid	Gas
Does the object flow?	No	Yes	Yes
Can the object be	No	No	Yes
compressed?			
Does the object fill to fit	No	No	Yes
the container?			
Does the object have a	Yes	No	No
fixed shape?			
Does the object have a	Yes	Yes	No
fixed volume?			

The Particle Model

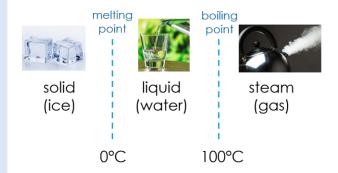
- 3. All matter is made from tiny particles
- 4. The arrangement of particles affects the properties of the substance
- 5. The three states of matter can be represented by a simple model, in which the particles are represented by small circles

Solid

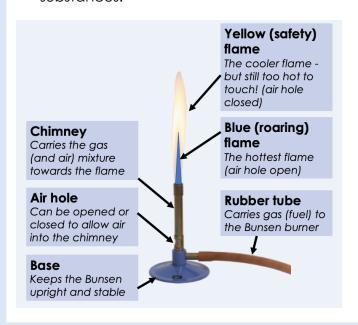
liquid

gas

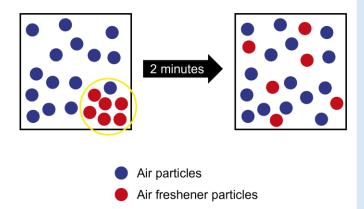
- 6. Particles in a **solid** are arranged in a regular pattern, touch each other and vibrate on the spot
- 7. Particles in a **liquid** are arranged randomly, are touching and move freely
- 8. Particles in a **gas** are arranged randomly, do not touch and move freely
- Some substances expand when heated.
 This is because when heated, particles have more energy. They vibrate more. The space between particles is bigger.


Changing State

- Changes of state involve the rearrangement of particles. The particles themselves do not change.
- 11. A substance **melts** when it changes from a solid to a liquid
- 12. When a solid melts, the particles gain **energy** from the surroundings, so they begin to **vibrate faster**. The particles move away from their places in the arrangement and start to move around more.
- 13. A substance **freezes** when it changes from a liquid to a solid
- 14. When a liquid starts to freeze, its particles move more slowly as they lose energy to the surroundings. The particles form a regular arrangement and vibrate on the spot.
- 15. Melting and freezing of a substance happens at a certain temperature called the **melting** point
- 16. A substance **boils** when it changes from a liquid to a gas
- 17. During boiling, a **liquid is heated.** The particles **gain energy. They move further apart.** This **forms a gas.**
- 18. A substance **condenses** when it changes from a gas to a liquid
- 19. During condensation, a gas cools. The particles lose energy. They move closer together until they are touching. This forms a liquid.
- 20. Boiling and condensing take place at the **boiling point**.
- 21. The **boiling point** is the temperature at which a liquid changes into a gas.


- 22. When boiling occurs, Bubbles of the substance rise up to the surface and escape into the air.
- 23.

- 24. The particles in a solid can vibrate in a fixed position and cannot move from place to place because there are strong forces, which attract the particles towards each other
- 25. The **particles in a liquid** are able to **move** around each other because the bonds are strong enough to keep the particles close together, but weak enough to let them move around each other


Heating substances

26. A Bunsen burner, electric heater and water bath can all be used to heat substances.

Diffusion

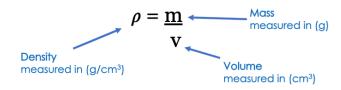
27. Diffusion is the movement of particles from a high concentration to a low concentration.

The particles of red gas diffuse over 2 minutes. The particles of the red gas move from a higher concentration to where the concentration is lower.

- 28. **Diffusion happens in liquids and gases** because particles are free to move
- 29. **Diffusion cannot happen in solids** because particles in a solid are not free to move
- 30. **Diffusion happens faster** when the particles in a liquid or gas are moving **faster after heating**

Variables

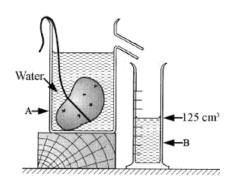
- 31. A **variable** is anything that can change or be changed.
- 32. The **independent variable** (IV) is the variable you **change** (the variable you want to investigate)
- 33. The dependent variable (DV) is the variable you measure because it depends on the IV
- 34. The **control variables** (CV) are the variables you **keep the same** because they could affect the dependent variable



Gas Pressure

- 35. **Gas pressure** happens because of particles colliding with the walls of a container
- 36. Increasing the size of the container decreases the gas pressure as there will be less collisions.
- 37. Decreasing the size of the container increases the gas pressure as there will be more collisions.
- 38. The deeper underwater you travel, the greater the pressure.
- 39. The higher up you go into the atmosphere, the less the pressure.
- 40. Greater pressure compresses gas particles so they are closer together and have a smaller volume

Density and volume


- 41. Density is defined as the mass per unit volume of a substance.
- 42. Density = mass ÷ volume

volume = length x width x height

(cm³) (cm) (cm) (cm)

- 43. If an object has an **irregular shape**, the volume can be measured using a **displacement can**, or **Eureka can**.
- 44. The **displaced** water in the cylinder occupies the same amount of space as the irregular object. The volume of water in the graduated cylinder is equal to the volume of the object.

