	Торіс	Information	Examples	Sparx Clip
1	Venn diagrams	A Venn diagram is a diagrammatic representation of two or more sets. $A \cap B$ $A \text{ and } B^*$ The intersection of A and B. Image: Constraint of the elements in both sets A and B. $A \cup B$ $A \circ B^*$ $A \cup B$ $A \circ F^*$ The union of A or B. Image: Constraint of A or B. $A \cup B$ $A \circ F^*$ The union of A or B. Image: Constraint of A or B. A' The complement of A. A' The complement of A. Any element not in A. Image: Constraint of A.	For example, this Venn diagram shows the set of numbers $\xi=\{1,2,3,4,5,6,7,8,9,10\}$ which have been sorted into factors of 10 (F) and even numbers (E). All numbers 1-101-10 are represented on the Venn diagram. The factors of 10 appear within F. The even numbers appear within E. The numbers that are both factors of 10 and even numbers appear in the intersection o F and E. The numbers that are not factors of 10 or even numbers are outside of the circles.	M941, M938, M755, M829, M419
2	Factors, multiples and primes	Factor-A number that divides exactly into another number without a remainder.Multiple- The result of multiplying a number by an integer. The times tables of a number.Prime- A number with exactly two factors.A number that can only be divided by itself and one.	The factors of 18 are: 1,2,3,6,9,18 The first five multiples of 7 are: 7,14, 21,28, 35 The first ten prime numbers are:2, 3, 5, 7, 11, 13, 17, 19, 23, 29	M829, M227, M365, M823, M322, M108
3	Nets	A net is what a 3D shape would look like if it was unfolded. You can draw and fold nets to make 3D shapes. A 3D shape can have more than one possible net .	Triangular prism Cuboid (rectangular prism) Hexagonal prism	M276, M767, M518
4	Surface area	The surface area of a prism can be calculated by adding together the areas of all its faces. Surface area of a cylinder Curved Surface Area = πdh or $2\pi rh$ Total SA = $2\pi r^2 + \pi dh$ or $2\pi r^2 + 2\pi rh$	$= 28\pi$	M518, M269, M996, M772, M884, M534, M661
5	Volume	Volume of a Prism = Area of Cross Section \times Length $V = A \times L$	Area of Cross Section Length	M269, M996, M765, M722, M465, M772