Tregoze Primary School Calculation Policy

Key Document details:			
Author:	Gabby Trout	Approver:	Helen Tudor
Owner:	Helen Tudor	Version No.:	I
Date:	$22 / 11 / 17$	Next review date:	September 2018
Ratified:	$22 / 11 / 17$		

add two single digit numbers

Counters on plates:

$1,2,3,4$,
5, 6.
Part, part, whole model:

0

Count on to find the answer

 augmentationPractically with objects, fingers etc:
$5+2$ "Put 5 in your head, 6, 7."

On a prepared number track (start with the bigger number). $4+2=6$

مr

Cross out drawn objects to represent what has been taken away:

3 take away 2 is 1

Tens frame:

Count on or back to find the answer
Practically, for example:
Group objects on a table then cover some to visualize the calculation:

2 less than 4 is 2

Start with 2... 3, 4.
Ten frame:
solve problems including doubling
Practically double a group of objects to find double of a number by combining then counting the two groups:

Double 4 is 8 .
solve problems including halving and sharing
Sharing objects:

One for you. One for me
Is it fair? How many do we each have?
15 shared between 5 is 3 .

Grouping objects:
Put groups of objects on plates-
How many groups of 4 are there in 12 stars?

Tens frame:

Tens frame.
Double 5 is 10 \qquad
-0.0.0.

Year I

Number - addition and subtraction

represent and use number bonds up to 20

Start with number bonds to 10 then build. Use a wide range of objects (including fingers!) and images to model the bonds, e.g. interlocking cubes.

Using object or fingers-

Count how many more fingers are needed to make ten.

Count how many more spots are needed to make ten

Tens frame:

$4+_{-}=10$
represent and use number bond facts related subtraction up to 20

Start with number bonds to 10 then build. Use a wide range of objects (including fingers!) and images to model the bonds, e.g. interlocking cubes.

Number - multiplication and division

count in multiples of twos, fives and tens (from number and place value)

group and share small quantities

Counting using a variety of practical

resources

Counting in 2 s e.g. counting socks,
shoes, animals in the ark...
Counting in IOs e.g. hundred
square, towers of cubes

(W0000-0000-0000-00000-0000-00000

Practical activities involving sharing,:
Distributing cards when playing a
game, putting objects onto plates, into cups, hoops etc.

Grouping:
Sorting objects into $2 \mathrm{~s} / 3 \mathrm{~s} / 4$ s etc How many pairs of socks are there?

There are 12 crocus bulbs. Plant 3 in each pot. How many pots are there? Jo has 12 Lego wheels. How many cars can she make?

Sharing pictures /objects:
12 children get into teams of 4 to play a game. How many teams are there?

read, write and interpret
 mathematical statements involving

 addition (+) and equals (=) signsIt is important to that children have a clear understanding of the concept of equality, before using the ' $=$ ' sign.
Calculations should be on either side of the ' $=$ ' to that children don't misunderstand ' $=$ ' as to mean 'the answer'.
$15+2=17$
$15=3+12$
read, write and interpret
mathematical statements involving and subtraction $(-)$ equals $(=)$ signs

It is important to that children have a clear understanding of the concept of equality, before using the ' $=$ ' sign.
Calculations should be on either side of the ' $=$ ' to that children don't misunderstand ' $=$ ' as to mean 'the answer'.
$15-2=13$
$15=18-3$
make connections between arrays and
number patterns
Arrays

Looking at columns Looking at rows

$$
2+2+2
$$

$$
\begin{equation*}
3+3 \tag{2}
\end{equation*}
$$

3 groups of 2
groups of 3
Arrays and repeated addition

or $4+4$
2×4
or $2+2+2+2$
solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=[]+4$

To support this, when solving calculations, missing numbers should be placed in all possible places:

$3+4=$	$=4+3$	
$3+=7$	7	$=+4$
$4+=7$	7	$=3+$
$+\nabla=7$	7	$=+\nabla$

solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=[]-9$

To support this, when solving calculations, missing numbers should be placed in all possible places:

$16-9=$		$=16-9$	
$16-$	$=7$	7	$=$
		-9	
$=16-$			
$-\nabla=7$	$7=$	$-\nabla$	

make connections between arrays and number patterns

There are 4 groups of 3 in 12 . 12 shared between 4 is 3 .
solve one-step problems involving division, by calculating the answer using concrete objects, pictorial representations and arrays with the support

Use all the models and images mentioned above. Discuss which is most effective and why.

Singapore Bar Method

Use all the models and images mentioned above. Discuss which is most effective and why.

Singapore Bar Method

understand and use vocabulary for

 addition, e.g. put together, add, altogether, total and more than+, add, more, plus, make, total, altogether, score, double, near double, one more, two more... ten more,
= equals, sign, is the same as
How many more to make...? How many more is... than...? How much more is...? Repetition of facts with different vocabulary:
"What is 2 add 5 ?" "What is 2
more than 5?"
"What is 2 plus 5 ?" What is the total of 2 and 5 ?" etc

Use all the models and images mentioned above. Discuss which is most effective and why.

Singapore Bar Method

understand and use vocabulary for addition and subtraction, e.g. take away, distance between, difference between and less than

- subtract, take (away), minus, leave, how many are leftleft over? how many have gone? one less, two less, ten less... how many fewer is... than...? how much less is...? difference between, half, halve, counting up/back...
= equals, sign, is the same as
Repetition of facts with different vocabulary:
"What is 7 take away 3?" "What is 3 less than 7?"
"What is 7 subtract 3!"
"What is difference between 3 and 7?"

use a variety of language to describe

 multiplicationcount on (from, to), count back (from, to), count in ones, twos, threes, fours, fives... count in tens, lots of, groups of, x, times, multiply, multiplied by, multiple of, once, twice, three times... ten times... times as (big, long, wide... and so on), repeated addition, array, row, column, double, halve
= equals, sign, is the same as

larger quantity	
	larger quantity - smoller quantity $=$ multiple
$\underbrace{}_{\text {smaller quantity }}$	larger quantity + multiples = larger quantity

use a variety of language to describe

 divisionArray, row, column, halve, share, share equally, one each, two each, three each... group in pairs, threes... tens, equal groups of
\div, divide, divided by, divided into, left, left over
= equals, sign, is the same as

Number - addition and subtraction

Number - multiplication and division

recall and use addition and
subtraction facts to 20 fluently, and derive and use related facts up to 100

Play games, chant, test etc to increase speed of recalling facts to 20 .
Make models and images to display facts.
Investigate related facts to 100 and repeat above.
add numbers using concrete objects, pictorial representations, and mentally, including:

- a two-digit number and ones or tens
recall and use addition and
subtraction facts to 20 fluently, and
derive and use related facts up to 100
Play games, chant, test etc to increase speed of recalling facts to 20.
Make models and images to display facts.
Investigate related facts to 100 and repeat above.
subtract numbers using concrete objects, pictorial representations, and mentally, including:
- a two-digit number and ones or tens
recall and use multiplication facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers

Play games, chant, test etc to increase speed of recalling facts to 20.
Make models and images to display facts.
Investigate related facts to 100 and repeat above.
connect the 10 multiplication table to place value, and the 5 multiplication table to the divisions on the clock face

recall and use division facts for the 2 5 and 10 multiplication tables, including recognising odd and even numbers

Play games, chant, test etc to increase speed of recalling facts to 20.

Make models and images to display facts.
Investigate related facts to 100 and repeat above.
connect the 10 multiplication table to place value, and the 5 multiplication table to the divisions on the clock face

Counting on $15+2$ Put 15 in your head, 16, 17.	Adding near numbers and odjusting$33+9=33+10-1$$-10$
Partition rumber ond recombine	
$\begin{aligned} 27+9 & =20+7+9 \\ & =20+16 \end{aligned}$	$3{ }^{33}{ }^{4}{ }_{-1} 43$
= 36	Hundred Square $17+30$ $17+30$
Count on by splitting units to make next multiple of ten $\begin{aligned} 36+8 & =36+4+4 \\ & =40+4 \\ & =44 \end{aligned}$	

Bridging ten

1

- two two-digit numbers

- adding three one-digit numbers

Use knowledge of adding, for example number bonds first or largest numbers first.

$$
\begin{aligned}
3+9+7 & =(3+7)+9 \\
& =10+9 \\
& =19
\end{aligned}
$$

- two two-digit numbers

relate multiplication to arrays and to repeated addition using a range of materials and contexts

Practically combine groups of objects ($2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s) and verbalise (then record) what has been found out: There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6

Mum washed 5 pairs of socks, how many socks did she get out of the washing machine? $2+2+2+2+2=$ 10

(3)

Use arrays for repeated addition and relate this to the x calculation:
(Use counters or objects as well as visual representations to support understanding)

$5+5+5=15$	00000	$3+3+3+3+3=15$
	00000	
$5 \times 3=15$	00000	$3 \times 5=15$

Use a number line for repeated addition:

relate division to grouping and sharing discrete and continuous quantities, to arrays and to repeated subtraction using a range of materials and contexts

Initially, pupils to practically 'share' and 'group' using practical equipment and pictorial representation. Move on to using arrays to identify groups, use physical counters before pictorial representations:

How many groups of 3 are in 15 ?

Grouping using a number line:
There are 30 children in the class, how many groups of 5 can we get into?

Use counters to support pupils understanding:

record addition and subtraction in

 columnsUse partitioned column method.
Solve calculations that do not cross the tens boundary, until they are secure with the method. Then solve calculations that do cross the tens boundary. Use base 10 (diennes) to support the understanding of 'carrying' and the value of 'digits'.

solve problems with addition:
\bullet using concrete objects and pictorial representations, including those involving numbers, quantities and measures

- applying increasing knowledge of mental and written methods

Use all the models and images mentioned above. Discuss which is most effective and why.

Singapore Bar Method

record subtraction in columns

Introduce partitioned column method where no exchanging is required:

$$
46-22=24
$$

$$
\begin{array}{r}
40+6 \\
-20+2 \\
\hline 20+4 \\
\hline
\end{array}
$$

use base 10 (diennes) to support understanding

solve problems with subtraction:
\bullet using concrete objects and pictorial representations, including those involving numbers, quantities and measures
applying increasing knowledge of mental and written methods

Use all the models and images mentioned above. Discuss which is most effective and why.
calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication (\times) and equals ($=$) signs

$$
3 \times 4=12
$$

Repetition of sentence with different vocabulary:
"3 times 4 equals 12"
"3 lots of 4 are 12"
"3 multiplied by 4 equals 12 "
"The product of 3 and 4 is 12 "

solve problems involving

 multiplication, using materials, arrays, repeated addition, mental methods, and multiplication facts, including problems in contextsUse all the models and images mentioned above. Discuss which is most effective and why.

Singapore Bar Method
calculate mathematical statements for division within the multiplication tables and write them using the division (\div) and equals (=) signs

$$
12 \div 4=3
$$

Repetition of sentence with different vocabulary:
" 12 divided by 4 equals 3 "
" 12 shared by 4 is $3 "$
" 12 grouped into $4 s$ is $3 "$
solve problems involving division, using materials, arrays, repeated addition, mental methods, and division facts, including problems in contexts

Use all the models and images mentioned above. Discuss which is most effective and why.

Singapore Bar Method

recognise and use the inverse relationship between addition and subtraction and use this to solve missing number problems

Missing numbers placed in all possible places.		$7+4=11 \quad 11-4=7$	$\begin{aligned} & 14+5=10+ \\ & 17-5=14- \end{aligned}$
7-3 = -	$\square=4+3$		
$7-\square=4$	$7=\square+3$	-	and three numbers
--3 $=4$	$7=4+\square$		
$\square-\nabla=4$	$7=\square+\nabla$		$35=46-\square$

show that addition of two numbers
can be done in any order
(commutative)
On a number line
check their calculations, including adding numbers in a different order to check addition (for example, $5+2+1=1+$ $5+2=1+2+5)$ - establishing commutativity and associativity of addition
show that subtraction of two numbers cannot be done in any order
On a number line

12-38 $\ddagger 26$ $38-12=26$

check their calculations, including by adding to check subtraction

See models and images above.
recognise and use the inverse relationship between multiplication and division and use this to solve missing number problems

$3 \times 5=15$	00000	$15 \div 3=5$
	000	
$5 \times 3=15$	$\bigcirc 0000$	$15 \div 5=3$

show that multiplication of two numbers can be done in any order (commutative)

$15 \div 5=3$
show that division of one number by another cannot be done in any order
$5-15 \neq 3$

See models and images above.			
recognise and use the inverse relationship between addition and subtraction and use this to check calculations See models and images above.	recognise and use the inverse relationship between addition and subtraction and use this to check calculations See models and images above.	use commutativity and inverse relations to example, $4 \times 5=20$ and $20 \div 5=4$) $\begin{aligned} & \text { Arrays - related facts } \\ & \qquad \begin{array}{l} 3 \times 5=15 \\ 5 \times 3=15 \end{array} \end{aligned}$	develop multiplicative reasoning (for $15 \div 3=5$ $15 \div 5=3$
extend their understanding of the language of addition to include sum +, add, more, plus, make, sum, total, altogether, score, double, near double, one more, two more... ten more, How many more to make...? How many more is... than...? How much more is...? Repetition of facts with different vocabulary: "What is 2 add 5 ?" "What is 2 more than 5?" "What is 2 plus 5?" What is the total of 2 and 5?" etc = equals, sign, is the same as	extend their understanding of the language of subtraction to include difference - subtract, subtraction, take (away), minus, leave, how many are left/left over? one less, two less... ten less... one hundred less, how many fewer is... than...? how much less is...? difference between, half, halve, tens boundary $13+5=8$ Repetition of sentence with different vocabulary: " 13 subtract 5 equals 8 " " 5 less than 13 is 8 "I3 take away 5 equals 8 " "The difference between 13 and 5 is 8 " etc = equals, sign, is the same as	use a variety of language to describe multiplication count on (from, to), count back (from, to), count in ones, twos, threes, fours, fives... count in tens, lots of, groups of, x, times, multiply, multiplied by, multiple of, once, twice, three times... ten times... times as (big, long, wide... and so on), repeated addition, array, row, column, double, halve = equals, sign, is the same as	use a variety of language to describe division Array, row, column, halve, share, share equally, one each, two each, three each... group in pairs, threes... tens, equal groups of, \div, divide, divided by, divided into, left, left over = equals, sign, is the same as

Number - addition and subtraction

add numbers mentally, including:

- a three-digit number and ones
- a three-digit number and tens
- a three-digit number and hundreds

Counting
$115+2$
Put 115 in your head, 116, 117."
Partition number and recombine
$127+90=100+20+7+90$ $=100+110+7$
$=10+117$
$=1017$
$=217$

- two two-digit numbers (including answer crossing 100)

| Counting on with number lines |
| :--- | :--- |
| $48+36=84 \quad+30$ | crossing 100)

subtract numbers mentally, including:

- a three-digit number and ones
- a three-digit number and tens
- a three-digit number and hundreds

recall and use multiplication facts for the 3,4 and 8 multiplication tables

Play games, chant, test etc to increase speed of recalling facts.
Make models and images to display facts.
Investigate patterns within tables.
recall and use division facts for the 3, 4 and 8 multiplication tables

Play games, chant, test etc to increase speed of recalling facts.
Make models and images to display facts.
Investigate patterns within tables.

- two two-digit numbers (including answer

understand and use mental methods using commutativity and associativity (for example, $4 \times 12 \times 5=4 \times 5 \times 12=$ $20 \times 12=240)$

Use a variety of resources (including a calculator) to investigate order of multiplication.
Make models and images to display
facts.
understand and use mental methods using multiplication a facts (e.g. using $3 \times 2=$ $6,6 \div 3=2$ and $2=6 \div 3$) to derive related facts (e.g. $30 \times 2=60,60 \div 3=20$ and $20=60 \div 3$)

$30 \times 5=150$	$50 \times$	50	150	$5=30$	$150 \div 3=50$
	$3 \times 5=15$			$15 \div 3=5$	
$3 \times 50=150$					$150 \div 30=5$
	$5 \times 3=15$	\bigcirc		$15 \div 5=3$	
$5 \times 30=150$	$50 \times 30=1500$			$50=1500$	$150 \div 50=3$

add numbers with up to three digits, using formal written methods of columnar addition (See Appendix I)

subtract numbers with up to three digits, using formal written methods of columnar subtraction (See Appendix I)

Use base 10 (diemnes) as a practical method to introduce exchanging
$31-18=13$

When pupil(s) are confident in doing this practicolly and verbalizing When pupi(s) are confident in doing this practicolly and verbalizing
the calculation, begin to record using partitioned column method:

When secure with exchanging, use
partitioned colun methot solve
calculoutions involving 3 digit numbers.
Repeating hhe practical stage if
necessany.

Introduce Column Subtraction without decomposition:
$\xrightarrow[10010]{10}$
solve problems, including missing number problems, using number facts, place value, and more complex addition

Missing numbers should be placed in all possible places:

$$
\begin{array}{ll}
3+4= & =4+3 \\
3+=7 & 7=+4 \\
4+=7 & 7=3+ \\
+\nabla=7 & 7=+\nabla
\end{array}
$$

solve problems, including missing number problems, using number facts, place value, and more complex subtraction

Missing numbers should be placed in
all possible places:
$16-9=\quad=16-9$
16- = 7
$7=-9$
$-9=7$
$7=16-$
$-\nabla=7$
$7=$
Use all the models and images
mentioned above. Discuss which is
deciding which of the four operations to
use and why
Missing numbers placed in all possible
places.
$7 \times 2=$
$7 x=14$
$x 2=14$
$=2 \times 7$
$14=x 7$
$14=2 x$
$14=x \nabla$ most effective and why.
develop reliable written methods for multiplication, starting with calculations of two-digit numbers by one-digit numbers and progressing to the formal written methods of short multiplication

solve problems, including missing number problems, involving multiplication, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects solve simple problems in contexts,

Extend to
$2 \times 6=3 x$
develop reliable written methods for division, starting with calculations of twodigit numbers by one-digit numbers and progressing to the formal written methods of short division

solve problems, including missing number problems, involving division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects solve simple problems in contexts, deciding which of the four operations to use and why

Missing numbers placed in all possible places.

$6 \div 2=$	$=6 \div 2$
$6 \div=3$	$3=6 \div$
$\div 2=3$	$3=\div 2$
$\div \nabla=3$	$3=\div \nabla$

Extend to
$12 \div 6=8 \div$

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { more is... than...? how much more } \\ \text { is...? } \\ =\text { equals, sign, is the same as } \\ \text { tens boundary, hundreds boundary }\end{array} & \begin{array}{l}\text { is... than...? how much less is...? } \\ \text { difference between, half, halve }\end{array} & \begin{array}{l}\text { multiplied by, multiple of, product, } \\ \text { once, twice, three times... ten } \\ \text { times...times as (big, long, wide... and } \\ \text { so on), repeated addition, array, row, } \\ \text { column }\end{array} & \begin{array}{l}\text { division, divided by, divided into, left, } \\ \text { left over, remainder }\end{array} \\ =\text { e equals, sign, is the same as }\end{array}\right\}$

Number - addition and subtraction

add numbers mentally, including:

- a four-digit number and ones
- a four-digit number and tens
- a four-digit number and hundreds
- a four-digit number and thousands
$\left.\begin{array}{|l|l|}\hline \text { Counting on } \\ 3115+2\end{array} \quad \begin{array}{rl}\text { Adding near numbers and adjusting } \\ 7433+90=7433+100-10 \\ =7533-10\end{array}\right]$
- three and two-digit numbers

subtract numbers mentally, including:
- a four-digit number and ones
- a four-digit number and tens
- a four-digit number and hundreds
- a four-digit number and thousands

- three and two-digit numbers

recall multiplication facts for multiplication tables up to 12×12

Play games, chant, test etc to increase speed of recalling facts.
Make models and images to display facts.Make models and images to display facts. nvestigate patterns within tables.
recall division facts for multiplication
tables up to 12×12
Play games, chant, test etc to increase speed of recalling facts.
ake models and images to display facts Investigate patterns within tables.
use place value, known and derived facts use place value, known and derived facts to multiply mentally, including: to divide mentally, including: dividing by I practise and extend mental methods to
three-digit numbers to derive facts, (for example $600 \div 3=200$ can be derived from $2 \times 3=6$)

Use knowledge of multiplication facts and place value to derive related facts.
Use knowledge of multiplication facts and place value to derive related facts. $30 \times 5=150 \quad 50 \times 3=150 \quad 150 \div 5=30 \quad 150 \div 3=50$ $\begin{array}{llll} & \begin{array}{ll}3 \times 5=15 & 00000\end{array} & 15 \div 3=5 \\ & 00000 & \\ 5 \times 3=15 & 00000 & 15 \div 5=3\end{array} 150 \div 30=5$ $5 \times 30=150 \quad 50 \times 30=1500 \quad 30 \times 50=1500 \quad 150 \div 50=3$

Partition
$18 \times 9=(10 \times 9)+(8 \times 9)$
$=90+72$
$=162$
recognise and use commutativity in mental calculations
write statements about the equality of expressions (for example, use the distributive law $39 \times 7=30 \times 7+9 \times 7$
and associative law
$(2 \times 3) \times 4=2 \times(3 \times 4))$
Use a variety of resources (including a calculator) to investigate order of
$30 \times 5=150 \quad 50 \times 3=150 \quad 150 \div 5=30 \quad 150 \div 3=50$
$3 \times 50=3 \times 5=15 \quad 00000 \quad 15 \div 3=5$
$3 \times 50=150 \quad 5 \times 3=15 \quad 00000 \quad 15 \div 5=3 \quad 150 \div 30=5$
$5 \times 30=150 \quad 50 \times 30=1500 \quad 30 \times 50=1500 \quad 150 \div 50=3$
Partitioning/Chunking
$77 \div 5=(50 \div 5)+(25 \div 5)+($ remainder 2$)$
$=10+5+$ (remainder 2)
$=15$ remainder 2
recognise and use factor pairs in mental calculations

Use a variety of resources (including a
calculator) to investigate factor pairs.
Make models and images to display facts.

		multiplication. Make models and images to display facts.	
add numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate (see Appendix I) Column addition $\begin{array}{r} 2358 \\ +\quad 373 \\ \hline 2731 \\ \hline 11 \end{array}$ To ensure conceptual understanding, it is essential that place value is reinforced by frequently. Discussing the actual value of each digit, e.g. the 5 digit represents 5 hundreds. Use base 10 (Diennes) or place value counters to support understanding of carrying and to ensure conceptual understanding of place value (see year 2 and 3 for how to use these manipulatives). Including decimals $\begin{array}{r} 72.8 \\ +\quad 54.6 \\ \hline 127.4 \\ \hline 1 \end{array}$ To ensure conceptual understanding, it is essential that place value is reinforced by frequently discussing the	subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate (see Appendix I) Revision of partitioned column method from Year 3. Moving on to numbers with 4 digits: (use Diennes to support when required.) $\begin{array}{r} 2754-1562=1192 \\ 2000+60000+50+4 \\ -1000+500+60+2 \\ \hline 1000+100+90+2 \end{array}$ Column Subtraction without decomposition $\begin{array}{r} 458 \\ -\quad 232 \\ \hline 226 \end{array}$ Column Subtraction with decomposition Once pupils are confident in exchanging and have a clear understanding of place value, move towards the formal compact column method: (use Diennes to support when required.) $\begin{array}{r} 2 x^{\prime} 54 \\ -1562 \\ \hline 1192 \end{array}$	multiply two-digit and three-digit numbers by a one-digit number using formal written layout (see Appendix I) Grid method 231×7 is approximately $200 \times 10=$ 2000$231 \times 7=1617$$x$ 7 200 1400 30 210 1 7 1617 move onto formal method of short multiplication when proficient $\begin{array}{r} 452 \\ \times \quad 3 \\ \hline 1356 \\ \hline 1 \end{array}$	divide numbers up to 3 digit by a one-digit number using the formal written method of short division and begin to interpret remainders. Short division with no remainders in the final answer, use place value counters/Diennes where support is required. Remainders Begin to interpret remainders by looking at word problems to give context and small numbers to start with.

actual value of each digit, e.g. the 2 digit represents 2 tens.

Use money to support understanding.
solve addition two-step problems in contexts, deciding which operations and methods to use and why

Use all the models and images mentioned above. Discuss which is most effective and why.

Singapore Bar Method

estimate and use inverse operations to check answers to a calculation

Estimate answers before solving any calculation.
Once inverse operation has been
learnt use as a method for checking.
solve subtraction two-step problems in contexts, deciding which operations and methods to use and why

Use all the models and images mentioned above. Discuss which is most effective and why.

Singapore Bar Method

estimate and use inverse operations to check answers to a calculation

Estimate answers before solving any calculation.
Once inverse operation has been learnt use as a method for checking.
solve problems involving multiplying and solve two-step problems in contexts, adding, including using the distributive choosing the appropriate operation, law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects solve two-step problems in contexts, choosing the appropriate operation, working with increasingly harder numbers

Use all the models and images mentioned above. Discuss which is most effective and why.

Singapore Bar Method

estimate and use inverse operations to check answers to a calculation

Estimate answers before solving any calculation.
Once inverse operation has been learnt use as a method for checking.
working with increasingly harder numbers

Use all the models and images mentioned above. Discuss which is most effective and why.

Singapore Bar Method

estimate and use inverse operations to check answers to a calculation

Estimate answers before solving any calculation.
Once inverse operation has been learnt use as a method for checking.

use a variety of language to describe

 addition+ add, addition, more, plus, increase, sum, total, altogether, score, double, near double, how many more to make...? tens boundary, hundreds boundary, inverse
$=$ equals, sign, is the same as
use a variety of language to describe subtraction
- subtract, subtraction, take (away), minus, decrease, leave, how many are left/left over? difference between, half, halve, how many more/fewer is... than...? how much more/less is...? tens boundary, hundreds boundary, inverse
= equals, sign, is the same as
use a variety of language to describe multiplication
times, multiply, multiplication, multiplied by, multiple of, product once, twice, three times... ten times... times as (big, long, wide... and so on)
repeated addition array, row, column, double, inverse
= equals, sign, is the same as
use a variety of language to describe division

Array, row, column, halve, share, share equally, one each, two each, three each...
group in pairs, threes... tens. equal groups of, divide, division, divided by, divided into, remainder, factor, quotient, divisible by, inverse
$=$ equals, sign, is the same as

Number - addition and subtraction

add numbers mentally with increasingly large numbers (e.g. 12 $462-2300=10$ I62)

Partition both numbers and recombine
$2358+773$
$=2000+300+50+8+700+70+3$
$=2000+1000+120+11$
$=3000+100+30+1$
=3131
Partitioning with number lines

Partition second number only into hundreds, tens and ones and recombine
$2358+773=2358+700+70+3$
$=3058+70+3$
$=3128+3$
$=3131$
Add the nearest multiple of 10 or
100 , then adjust
$458+79=458+80-1$
subtract numbers mentally with increasingly large numbers (e.g. 12 $462-2300=10 \quad 162$)

$$
\begin{aligned}
& \text { Subtract the nearest multiple of } 10 \text { or } \\
& 100, \text { then adjust }
\end{aligned} \begin{array}{r}
\begin{array}{r}
458-79 \\
=458-80+1 \\
=378+1 \\
=379
\end{array} \\
\text { Find a differenceby counting up } \\
\text { move-299: s013 }
\end{array}
$$

Use known number facts and place value to subtract (partition second number only)

12462-2300
$=12462-2000-300$
$=10462-300$
$=10162$

Number - multiplication and division
multiply numbers mentally drawing \quad divide numbers mentally drawing upon known facts
upon known facts
Partition
$47 \times 6=(40 \times 6)+(7 \times 6)$
$=(240)+(42)$
= 282
Partitioning
$72 \div 3=(60 \div 3)=(12 \div 3)$

$$
=20+4
$$

$$
=24
$$

Double and halve

$$
25 \times 16=50 \times 8=100 \times 4=200 \times 2
$$

$$
=400
$$

multiply whole numbers and those involving decimals by 10,100 and 1000
Place Value

identify factors, including finding al factor pairs of a number, and common factors of two numbers (and use them to construct equivalence statements, e.g. $4 \times 35=2 \times 2 \times 35 ; 3 \times 270=3 \times 3 \times$ $9 \times 10=9^{2} \times 10$)

Use a variety of resources (including a calculator) to investigate factors. Make models and images to display facts.

Factor trees:

recall prime numbers up to 19 establish whether a number up to 100 is prime
divide whole numbers and those involving decimals by 10,100 and 1000
Place Value

identify multiples, (and use them to construct equivalence statements, e.g. $4 x$ $35=2 \times 2 \times 35 ; 3 \times 270=3 \times 3 \times 9 \times$ $10=9^{2} \times 10$)

Use a variety of resources (including a calculator) to investigate multiples. Make models and images to display facts.
identify multiples, (and use them to
construct equivalence statements, e.g. $4 \times$
$35=2 \times 2 \times 35 ; 3 \times 270=3 \times 3 \times 9 \times$
$10=9^{2} \times 10$)
recall prime numbers up to 19 establish whether a number up to 100 is prime

		Play games, chant, test etc to increase speed of recalling facts. Make models and images to display facts. Investigate patterns within primes.	Play games, chant, test etc to increase speed of recalling facts. Make models and images to display facts. Investigate patterns within primes.
		recognise and use square numbers and cube numbers, and the notation for squared $\left({ }^{2}\right)$ and cubed (${ }^{3}$) Use a variety of resources (including a calculator) to investigate square and cubed numbers. Make models and images to display facts. Investigate the patterns within squared and cubed numbers.	
add numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction - see Appendix I) Column addition $\begin{array}{rr} 124.90 & \text { (add in a zero to keep } \\ +\underline{117.25} & \text { the place value) } \\ \underline{242.15} & \end{array}$ To ensure conceptual understanding, it is essential that place value is reinforced by frequently. Discuss the value of each digit. Use base 10 (Diennes) to support understanding of exchanging and to ensure conceptual understanding of place value. Where there is an 'empty' space in a decimal column, pupils should insert a zero to show the value. Children should be made aware that it is essential to align the columns carefully.	subtract numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction - see Appendix I) and place value). When confident in using formal compact column method with integers and decimals involving money (always 2 decimal places), extend to subtraction with mixtures of integers and decimals. A clear understanding of place value is essential. Align the decimal point and use 'place holders', if needed. $\begin{aligned} \text { 5/4\%, } & \begin{array}{l} \text { Use Diennes or place value } \\ \text { counters (add counters with 0.1) to } \end{array} \\ 263.0 & \begin{array}{l} \text { support understanding of } \\ \text { secomposition and place value. } \end{array} \\ \hline 236.5 & \end{aligned}$	multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers Review formal method of short multiplication (for multiplying by one digit numbers) when proficient $\begin{array}{r} 452 \\ \times \quad 3 \\ \hline 1356 \\ \hline 1 \end{array} \quad \begin{array}{r} 1243 \\ \hline \begin{array}{l} 9624 \\ \hline 132 \end{array} \\ \hline \end{array}$ Start with grid method when multiplying by 2 digit numbers 72×38 is approximately $70 \times 40=2800$ Move onto formal long multiplication Then formal multiplication with more complex numbers: $\begin{array}{r} 34 \\ \times 13 \\ \hline 102 \\ 1 \\ 340 \\ \hline 442 \end{array}$ $\begin{array}{r} 1234 \\ \times \quad 16 \\ \hline 7404 \\ 12340 \\ \hline 19,744 \end{array}$	divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context (as fractions, as decimals or by rounding (for example, $98 \div 4=98 / 4$ $=24$ r $2=241 / 2=24.5 \approx 25$)

		use and explain the equals sign to indicate equivalence, including missing number problems (e.g, $13+24=12+25$; $33=5 \times[]$) express distributivity, for example as $a(b$ $+c)=a b+a c$ Use all of the models and images above to investigate a range of statements, ensuring the equals sign is in different positions. Allow time for discussion and reasoning. Display solutions and reasoning. Also use errors or misconceptions as a starting point.	use and explain the equals sign to indicate equivalence, including missing number problems (e.g, $13+24=12+25$; $33=5 \times[]$) Use all of the models and images above to investigate a range of statements, ensuring the equals sign is in different positions. Allow time for discussion and reasoning. Display solutions and reasoning. Also use errors or misconceptions as a starting point.
use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check).	Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check).	Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check).	Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check).
use a variety of language to describe addition + add, addition, more, plus, increase, sum, total, altogether, score, double, near double, how many more to make...? tens boundary, hundreds boundary, units boundary, tenths boundary, inverse = equals, sign, is the same as	use a variety of language to describe subtraction - subtract, subtraction, take (away), minus, decrease, leave, how many are left/left over? difference between, half, halve, how many more/fewer is... than...? how much more/less is...? tens boundary, hundreds boundary, units boundary, tenths boundary, inverse = equals, sign, is the same as	use a variety of language to describe multiplication know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers lots of, groups of, times, multiply, multiplication, multiplied by, multiple of, product, once, twice, three times... ten times... times as (big, long, wide... and so on), repeated addition, array, row, column, double,, inverse, prime, equals, sign, is the same as	use a variety of language to describe division Array, row, column, halve, share, share equally one each, two each, three each... group in pairs, threes... tens, equal groups of, divide, division, divided by, divided into, remainder, factor, quotient, divisible by, inverse. Prime, factors equals, sign, is the same as

Year 6

Number - addition and subtraction

Number - multiplication and division

perform mental calculations, including with mixed operations and large
numbers (and decimals)

Partition both numbers into hundreds, tens, ones and decimal fractions and recombine

$$
\begin{aligned}
35.8+7.3 & =30+5+0.8+7+0.3 \\
& =30+12+1.1 \\
& =42+1.1 \\
& =43.1
\end{aligned}
$$

Partition second number only into hundreds, tens, ones and decimal fractions and recombine

$$
\begin{aligned}
35.8+7.3 & =35.8+7+0.3 \\
& =42.8+0.3 \\
& =43.1
\end{aligned}
$$

Add the nearest whole number then adjust

$$
\begin{aligned}
52+11.9 & =52+12-0.1 \\
& =64-0.1 \\
& =63.9
\end{aligned}
$$

perform mental calculations, including with mixed operations and large numbers(and decimals)

Use known number facts and place value to subtract

$$
6.1-2.4=3.7
$$

Subtract the nearest whole number then adjust

$$
\begin{aligned}
52-11.9 & =52-12+0.1 \\
& =40+0.1 \\
& =40.1
\end{aligned}
$$

perform mental calculations, including with mixed operations and large numbers(and decimals)

Partitioning

$$
\begin{aligned}
7.2 \div 3 & =(6 \div 3)+(1.2 \div \\
& 3) \\
= & 2+0.4 \\
= & 2.4
\end{aligned}
$$

Double and halve

$$
\begin{aligned}
& 4.25 \times 32=8.5 \times 16 \\
&= 17 \times 8 \\
&=34 \times 4 \\
&= 68 \times 2 \\
&=136
\end{aligned}
$$

identify common factors, common

Use a variety of resources (including a calculator) to investigate common factors, common multiples and prime factors, common multiples and prime
numbers. Make models and images to display facts. Investigate the patterns within the numbers.
perform mental calculations, including with mixed operations and large
numbers(and decimals)

Partitioning

$$
\begin{aligned}
4.7 \times 6= & (4 \times 6)+(0.7 \times 6) \\
= & (24)+(4.2) \\
= & 28.2
\end{aligned}
$$

multiples and prime numbers

identify common factors, common multiples and prime numbers

Use a variety of resources (including a calculator) to investigate common factors, common multiples and prime numbers. Make models and images to display facts. Investigate the patterns within the numbers.
practise addition for larger numbers, using the formal written methods of columnar addition (see Appendix I)

Extend the use of compact column method to adding several numbers with_mixed decimals.

Children should be reminded of the importance of aligning the columns accurately.

Where there is an 'empty' space in a decimal column, pupils could insert a zero to show the value.
practise subtraction for larger numbers, using the formal written methods of columnar subtraction (see Appendix I)

Column Subtraction with decomposition

$$
\begin{array}{rrr}
61414 & 8.81 \\
\times 34 & \text { Including } \\
-\frac{286}{468} & -\frac{1.17}{7.19} & \text { decimals }
\end{array}
$$

Revision of formal compact column method
extending to more complex integers and applying to problem solving using money and measures, including Align the decimal point when setting out calculations.
Use 'place holders' to aid understanding of the value in that column.

solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why

Use all the models and images mentioned above. Discuss which is most effective and why.
multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of short and long multiplication (Appendix I)

Short multiplication and Long multiplication as in Year 5, but apply to numbers with decimals.

$3 \cdot 19$
$\times 8$
$25 \cdot 52$
1

Pupils may need reminding that single digits belong in the ones (units) column.
A sound understanding of place value and the formal method itself are required before progressing to decimal multiplication.
divide numbers up to 4 digits by a two-digit whole number using the formal written method of short and long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context (Appendix I)

Short division

Long division (for dividing by 2 digits)

Long division
$432+15$ becon

$432 \sim 15$ becomes			
		2	8
1	$5 \longdiv { 4 }$	3	2
	3	0	0
	1	3	2
	1	2	0
		1	

$432 \div 15$ becomes

$1 5 \longdiv { 4 } \begin{array} { l l l l } { 4 } & { 3 } & { 2 } & { 0 } \\ { 3 } & { 0 } & { \downarrow } \end{array}$

3	0	
1	3	2

1	3	2	
1	2	0	
	2	2	0
	1	2	0

0
Answer: 28.8

Remainders

Quotients expressed as fractions or decimal fractions

$$
61 \div 4=151 / 4 \text { or } 15.25
$$

solve problems involving division
Use all the models and images
mentioned above. Discuss which is most effective and why.

Use all the models and images mentioned above. Discuss which is most effective and why.
solve problems involving
multiplication
Use all the models and images mentioned above. Discuss which is most effective and why.
Singer

Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check).	Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check).	Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check).	Estimate answers before solving any calculation. Check against estimate after calculating (and use inverse check).
use a variety of language to describe subtraction + add, addition, more, plus, increase, sum, total, altogether, score, double, near double, how many more to make...? tens boundary, hundreds boundary, units boundary, tenths boundary, inverse = equals, sign, is the same as	use a variety of language to describe subtraction - subtract, subtraction, take (away), minus, decrease, leave, how many are left/left over? difference between, half, halve, how many more/fewer is... than...? how much more/less is...? tens boundary, hundreds boundary, units boundary, tenths boundary, inverse = equals, sign, is the same as	use a variety of language to describe subtraction x lots of, groups of, times, multiply, multiplication, multiplied by, multiple of, product, once, twice, three times... ten times... times as (big, long, wide... and so on), repeated addition, array, row, column double, inverse = equals, sign, is the same as	use a variety of language to describe subtraction Array, row, column, halve, share, share equally one each, two each, three each... group in pairs, threes... tens, equal groups of, divide, division, divided by, divided into, remainder, factor, quotient, divisible by, inverse = equals, sign, is the same as

