Q1.

The electric kettle shown below is used to boil water.

©leeser87/iStock

 (a) After the water has boiled, the temperature of the water decreases by 22 °C. The mass of water in the kettle is 0.50 kg. The specific heat capacity of water is 4200 J/kg °C.

Calculate the energy transferred to the surroundings from the water.

Energy = _____ joules

(b) Why is the total energy input to the kettle higher than the energy used to heat the water?

Tick (**√**) **one** box.

	Tick (√)
Energy is absorbed from the surroundings.	
Energy is used to heat the kettle.	
The kettle is more than 100% efficient.	

(1) (Total 3 marks)

(2)

Q2.

A new design for a kettle is made from two layers of plastic separated by a vacuum. After the water in the kettle has boiled, the water stays hot for at least 2 hours.

The new kettle is shown below.

(a) The energy transferred from the water in the kettle to the surroundings in 2 hours is 46 200 J.

The mass of water in the kettle is 0.50 kg.

The specific heat capacity of water is 4200 J/kg °C.

The initial temperature of the water is 100 °C.

Calculate the temperature of the water in the kettle after 2 hours.

Temperature after 2 hours = _____ °C

Mark schemes

Q1.

(a) 46 200

Energy is used to heat the kettle.

accept 46 000
allow 1 mark for correct substitution
ie 0.5 × 4200 × 22 provided no subsequent step

2

1

[3]

Q2.

(b)

(a)	78 (°C)	
		allow 2 marks for correct temperature change ie 22 °C
		allow 1 mark for correct substitution
		ie 46 200 = 0.5 × 4200 x θ
		or
		46200
		$\overline{0.5 \times 4200} = 0$

3