
 GCSE Computer Science
Topic 2.3 Robust Programs

Why defensive design?
Helps to ensure programs function properly.
 Not breaking
 Not producing errors

3 elements of Defensive design:
• Anticipate how users might ‘misuse’ their program to

prevent it from happening.
• Ensure their code is well maintained.
• Reduce the numbers of errors in the code through testing.

Planning for contingencies / anticipating misuse
• Computer programs should be designed to COPE with

unexpected or erroneous input from users.
• Coders should PLAN for all contingencies that might occur.

(accidental and deliberate inputs)

Input validation: Validation checks that
data input is sensible, reasonable and
appropriate to be processed by the
program.

Presence check: Checks that data has
actually been entered and the field has not
been left blank..

Length check: Checks that a specified
number of characters has been entered.

Range check : Checks that the input falls
within a certain range. e.g. 1-100

Type check : This checks that the data
inputted is a certain data-type e.g. number
or letters.

Format check :
Checks that the input is in the correct
format e.g.
National insurance number XX999999X

Input
sanitisation :
Removes any
unwanted
characters
BEFORE
passing the
data to the
program.

Authentication is determining the identity of
the user before they can access the program or
parts of the program.
This is usually based upon a username and
associated password.
TOO MUCH AUTHENTICATION CAN:
• Affect the functionality of the system.
• Can put people off using it.

Maintainability:
Keeping the code well maintained aids defensive
design as it means when editing, improving or
testing the code – it is clear and easy to understand
what the code should be doing.

Commenting:

#Usually written with // or #

#Comments are useful for explaining what key

features of a program do.

#Well written/clear comments are essential in
allowing other programmers to understand your

program.

Indentation :
This is used to separate different statements in
a program. This allows other programmers to
see the flow of a program more clearly and pick
out the different features.
Indentation is usually used to show which
statements are part of a previous line of code.

E.g. with selection and iteration.

Naming Variables:
Variables should be named so that they reflect
their purpose.
This helps other programmers keep track and
recognise what the variables are when reading
/using the program.

• Testing ensures that the software
produces the expected results and
meets the needs of the user.

• Testing makes sure the program is
robust.

• Testing should be destructive and
should try to find errors rather than just
proving the program works.

ITERATIVE TESTING: Tests carried out
whilst the program is being developed.
The test results are then used to guide

further improvements.

FINAL TESTING: This is carried out once the
software has been developed.

Alpha testing is done by the developers.
Beta testing is carried out by the potential

users of the software.

A syntax error occurs when the compiler or
interpreter doesn’t understand something the

user has typed because it doesn’t follow the
rules or grammar of the programming language.

Syntax errors produce a error message which
details what is wrong and which line of code

contains the error.

Logical errors: The interpreter / compiler will be
table to run the code, but the program will do
something unexpected.
E.g. using the wrong Boolean operator.
Logical errors are difficult to diagnose / track down.
Logical errors can only be found through testing,
using a test plan.

What I need to know:

 GCSE Computer Science - Topic 2.3 Robust Programs

Explain the programmers defensively design programs.

State the 3 elements of defensive design.

Explain what planning for contingencies involves.

Describe input validation.

State the function of a presence check.

State the function of a length check.

State the function of a range check.

State the function of a type check.

State the function of a format check.

Describe input sanitisation.

Define authentication.

Explain what is meant by maintainability.

Describe how commenting helps improve maintainability.

Describe how indentation helps improve maintainability.

Describe how variable names help improve maintainability.

Explain why programs are tested.

Describe iterative testing.

Describe final testing.

State what is meant by a syntax error. Give an example.

State what is meant by a logical error. Give an example.

Describe what is meant by a test plan.

What are the three types of data a program should be
tested with?

Define normal, extreme and erroneous data.

