Year 9 Physics Contingency plan 2 weeks Unity Academy: Atomic Structure (Radioactivity)

Sign into SENECA and use the class code: (Year 9 Physics) x8bckcedz7

or use the url: https://app.senecalearning.com/dashboard/join-class/x8bckcedz7

Complete the assignments and then use the knowledge organiser to answer the self-quizzing questions. Finally, attempt the following questions:

	What is it?	Symbol	Charge	Ionising power	Penetrating power	Stopped by
Alpha						
Beta						
Gamma						

Key points

- Rutherford used the measurements from alphascattering experiments to prove that an atom has a small positively charged central nucleus where most of the mass of the atom is located.
- The plum pudding model could not explain why some alpha particles were scattered through large angles.
- The nuclear model of the atom correctly explained why the alpha particles are scattered and why some are scattered through large angles.
- 2 a Figure 5 shows four possible paths, labelled A, B, C and D, of an alpha particle deflected by a nucleus. Which path would the alpha particle travel along?
 - b Explain why each of the other paths in part a is not possible.

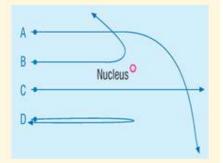


Figure 5

- 3 a Describe two differences between the nuclear model of the atom and the plum pudding model.
 - b Explain why the alpha-scattering experiment led to the acceptance of the nuclear model of the atom and the rejection of the plum pudding model.

Use	Type of Radiation	How it works
Smoke detector (Sounds an alarm when smoke is present in the air)		
Tracers in industry (Also used in medicine to find blockages without cutting into the body)		
Quality control (Controlling the thickness of a sheet of material to within a few nm)		

- 1 How many protons and how many neutrons are there in the nucleus of each of the following isotopes:
- **a** ^{12}C [1 mark] **b** $^{60}_{27}Co$ [1 mark] **c** $^{235}_{92}U$? [1 mark]
- d How many more protons and how many more neutrons are in ²³⁸₉₂U compared with ²²⁴₈₈Ra? [2 marks]

- 2 A substance contains the radioactive isotope ²³⁸₉₂U, which emits alpha radiation. The product nucleus X emits beta radiation and forms a nucleus Y. Determine how many protons and how many neutrons are present in:
 - **a** a nucleus of ²³⁸U [1 mark] **b** a nucleus of X [2 marks]
 - c a nucleus of Y [2 marks]

Half-life

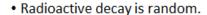
Half-life

The time it takes a sample of material for radioactivity to fall to ½ its The time it takes a sample of material for radioactivity to fall to ½ its original level. original level.

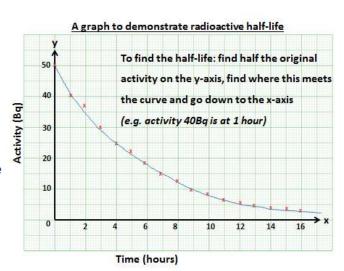
E.g.	450 Bq	\rightarrow	225 Bq
	100 Bq	\rightarrow	50 Bq
	6 Bq	\rightarrow	3 Bq

E.g. 450 Bq 225 Bq 100 Bq 50 Bq 6 Bq 3 Bq

of the sample is 240Bq, how long does it take to fall to 15Bq?


240Bq → 120Bq 4 hours 120Bq → 60Bq 4 hours Total = 16 Hours 4 hours 60Bq → 30Bq 30Bq → 15Bq 4 hours

A sample of radioisotopes has a half-life of 4 hours. If the activity A sample of radioisotopes takes 16 hours to drop from 240Bq to 15Bq. What is the half life?


> Total = 16 Hours 240Bq -> 120Bq 16h = 4 half-lives 120Bq → 60Bq So 1 half life is 4 hours 60Bq → 30Bq 30Bq → 15Bq

"The time it takes for activity to fall to ½ the original level"

- 1. A sample has a half life of 2 hours. How long does it take to drop from 100Bq to 25Bq?
- 2. A sample has a half life of 250 years. How long does it
- "The time it takes for activity to fall to ½ the original level"
 - 3. A sample takes 4 hours to fall from 300Bg to 75Bg. What is the half life?
- take for activity to fall from 64Bq to 4Bq?
- 4. A sample takes 24 weeks to fall from 1,200Bq to 75Bq. What is the half life?

- We cannot predict the outcome of one atom.
- · We can predict the outcome of a large number of
- 1) A radioactive material has an activity of 40Bq. If it takes 18weeks to fall to 5Bq, calculate the half-life of the sample.
- A sample has a half-life of 10 days. How long does it take to fall from an activity of 4,800Bq to 300Ba?
- How long does it take to fall to OBq? 2b)

