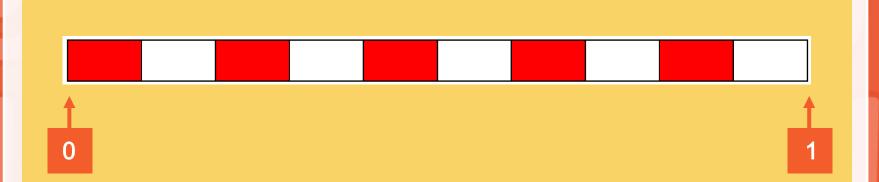


Adding Fractions

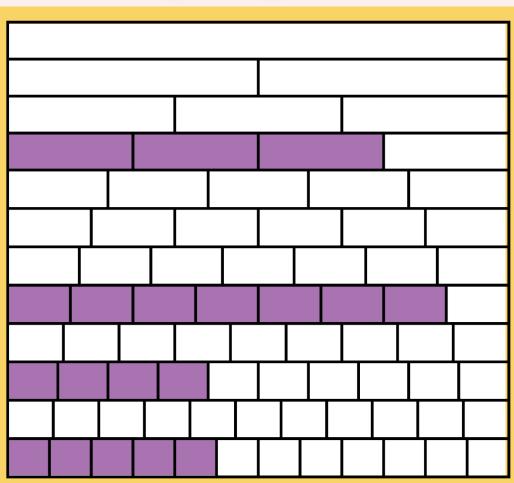
Aim


To add fractions with the same denominator.

Success Criteria

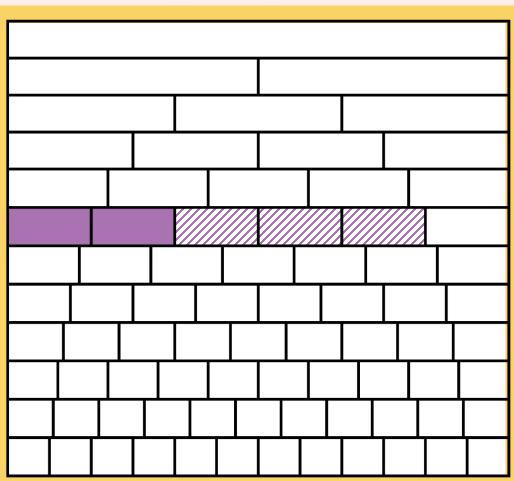
- I can use a fraction bar to represent a fraction.
- I can show two fractions on a fraction bar.
- I can use a fraction bar to find the total of two fractions.

Fraction Count



On your fraction wall, show ...

4 10

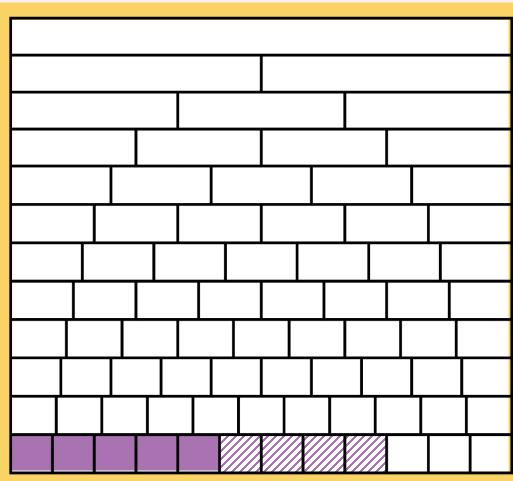


On your fraction wall, colour in $\frac{2}{6}$.

On your fraction wall, mark another $\frac{3}{6}$ with lines.

How many sixths have been coloured in altogether?

$$\frac{2}{6} + \frac{3}{6} = \frac{5}{6}$$

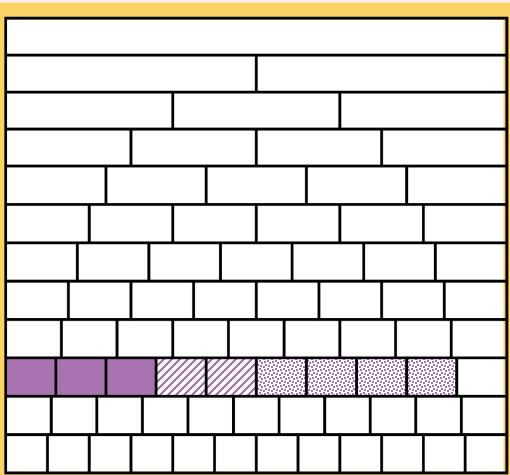


On your fraction wall, colour in $\frac{5}{12}$.

On your fraction wall, mark another $\frac{4}{12}$ with lines.

How many twelfths have been coloured in altogether?

$$\frac{5}{12} + \frac{4}{12} = \frac{9}{12}$$


On your fraction wall, colour in $\frac{3}{10}$.

On your fraction wall, mark another $\frac{2}{10}$ with lines.

On your fraction wall, mark another $\frac{4}{10}$ with dots.

How many tenths have been coloured in altogether?

$$\frac{3}{10} + \frac{2}{10} + \frac{4}{10} = \frac{9}{10}$$

Fraction Bars

How could this bar be used to show $\frac{2}{5}$?			
The bar needs to be split into 5 equal sections to represent fifths.			
2 of the 5 sections need to be coloured in to represent the 2 fifths.			
Draw fraction bars to show each of these fractions:			

Fraction Bars

Draw a fraction bar to represent $\frac{3}{8}$.

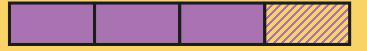
Add $\frac{4}{8}$ so that your fraction bar shows $\frac{3}{8} + \frac{4}{8}$.

so
$$\frac{3}{8} + \frac{4}{8} = \frac{7}{8}$$
.

Draw fraction bars to solve each of these calculations:

$$\frac{1}{4} + \frac{2}{4} = \frac{3}{4}$$

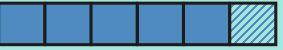
$$\frac{3}{8} + \frac{3}{8} = \frac{6}{8}$$


$$\frac{4}{6} + \frac{2}{6} = \frac{6}{6}$$
 or 1

What do you notice about the numerators and denominators when you add the fractions?

Beyond the Whole

Draw a fraction bar to calculate $\frac{3}{4} + \frac{2}{4}$.



What do we need to do to add $\frac{2}{4}$?

$$\frac{3}{4} + \frac{2}{4} = \frac{5}{4}$$
 or $1\frac{1}{4}$

Solve these calculations:

$$\frac{5}{6} + \frac{4}{6} = \frac{9}{6} \text{ or } 1\frac{3}{6}$$

$$\frac{6}{8} + \frac{6}{8} = \frac{12}{8}$$
 or $1\frac{4}{8}$

Adding Fractions

* Adding Fractions	Adding Fractions	Adding Fractions
Colour in the fraction bars to show these calculations and then give the 1. $\frac{2}{5}+\frac{1}{5}=$	Colour in the fraction bars to show these calculations and then give the 1. $\frac{2}{7}$ + $\frac{3}{7}$ =	Draw fraction bars to show these calculations. Give the answer as improper fractions and as mixed numbers where possible. 1. $\frac{2}{3} + \frac{3}{7} =$
2. ½ + ½ =	2. $\frac{2}{10} + \frac{4}{10} + \frac{3}{10} =$ 3. $\frac{5}{2} + \frac{3}{2} = \boxed{\text{or}}$	
3. \(\frac{4}{3} + \frac{3}{3} = \bigcirc	4. $\frac{6}{6} + \frac{3}{6} = $ or	2. $\frac{2}{10} + \frac{4}{10} + \frac{3}{10} =$
	Draw fraction bars to show these calculations and then give the answer 5. $\frac{2}{6} + \frac{3}{6} =$	3. $\frac{5}{6} + \frac{3}{6} = $ or
4. 2/7 + 3/7 =		
5. \(\frac{1}{4} + \frac{3}{4} = \infty \text{ or } \infty	6. $\frac{3}{5} + \frac{4}{5} = $ or	4. $\frac{6}{6} + \frac{2}{6} = $ or
6. $\frac{3}{6} + \frac{1}{6} =$		5. $\frac{2}{6} + \frac{1}{6} =$
7. \(\frac{4}{9} + \frac{4}{9} = \bigcircle{1}{9}	7. $\frac{2}{4} + \frac{3}{4} = $ or	
8. $\frac{2}{10} + \frac{4}{10} + \frac{3}{10} =$		6. 3/5 + 4/5 = or
twinkl planit Mathematics) Year STNumber and A and Subtract Fraction and Subtract Fraction	winklematics Year STNamber and a and Subtract Fractic	** **Wink!** **Planit** **Mathematics! Year STNumber and Algebra (Fractions and Decimals) Add and Subtract Fractions (Lesson 3 of 4: Adding Fractions 2 violated littless.**

The Total Is...

$$\frac{8}{6}(\frac{7}{8}\frac{2}{6})$$

Start

Aim

To add fractions with the same denominator

Success Criteria

- I can use a fraction bar to represent a fraction.
- I can show two fractions on a fraction bar.
- I can use a fraction bar to find the total of two fractions.

$$\frac{1}{y^{-2}}(x^{+1})$$

$$\frac{y^{-2}(x^{+1})}{(y^{3}-2)(x^{+1})}$$

$$\frac{1}{(x^{2}-2)(x^{+1})}$$