Progress Ladder – GCSE Computer Science
	[bookmark: _GoBack]
	COMPUTER SCIENCE
	102 & 103
	103 & 104
	Year 10
	Year 11

	1
	3.1.1 Representing algorithms
	Understand and explain the term algorithm. An algorithm is a sequence of steps that can be followed to complete a task. Be aware that a computer program is an implementation of an algorithm and that an algorithm is not a computer program.
Understand and explain the term
decomposition. Understand and explain the term decomposition. Decomposition means breaking a problem into a number of sub-problems, so that each subproblem
accomplishes an identifiable task,
which might itself be further subdivided.

Understand and explain the term abstraction. Abstraction is the process of removing unnecessary detail from a problem.

Explain simple algorithms in terms of their inputs, processing and outputs. Students must be able to identify where inputs, processing and outputs are taking place within an algorithm.

	Understand that more than one algorithm can
be used to solve the same problem. Compare the efficiency of algorithms explaining how some algorithms are more efficient than others in solving the same problem.

Determine the purpose of simple algorithms Students should be able to use trace tables and visual inspection to determine how simple algorithms work and what their purpose is.

	102 & 103
	103 & 104

	2
	3.1.3 Searching algorithms
	Understand and explain how the linear search algorithm works. Students should know the mechanics of the algorithm.
Understand and explain how the binary search algorithm works. Students should know the mechanics of the algorithm.
Compare and contrast linear and binary search algorithms. Students should know the advantages and disadvantages of both algorithms.
	Understand and explain how the merge sort algorithm works. Students should know the mechanics of the algorithm.

Understand and explain how the bubble sort algorithm works. Students should know the mechanics of the
algorithm.

Compare and contrast merge sort and bubble sort algorithms. Students should know the advantages and
disadvantages of both algorithms.
	102 & 103
	103 & 104

	3
	3.2.1 Data types
	Students need a theoretical understanding of all the topics in this section for the exams even if the programming language(s) they have been taught do not support all of the topics.
Understand the concept of a data type.
Understand and use the following appropriately:
• integer
• real
• Boolean
• character
• string.
Use, understand and know how the following statement types can be combined in programs:
• variable declaration
• constant declaration
• assignment
• iteration
• selection
• subroutine (procedure/function). The three combining principles (sequence,
iteration/repetition and selection/choice) are basic to all imperative programming languages.

Students should be able to write programs
using these statement types. They should be able to interpret algorithms that include these statement types.
Students should know why named constants and variables are used.

	Use nested selection and nested iteration
structures.

Use meaningful identifier names and know why it is important to use them. Identifier names include names for variables, constants and subroutine names.

Use definite and indefinite iteration, including indefinite iteration with the constants at the
start or the end of the iterative structure. A theoretical understanding of constant(s) at
either end of an iterative structure is required,
regardless of whether they are supported by the language(s) being used.

	103 & 104
	102 & 103

	4
	3.2.3 Arithmetic operations in a programming language
	Be familiar with and be able to use:
• addition
• subtraction
• multiplication
• real division
• integer division, including remainders
Integer division, including remainders is usually a two stage process and uses modular arithmetic:
eg the calculation 11/2 would generate the
following values:
Integer division: the integer quotient of 11 divided by 2 (11 DIV 2) = 5
Remainder: the remainder when 11 is divided by 2 (11 MOD 2) = 1
	
	103 & 104
	102 & 103

	5
	3.2.4 Relational operations in a programming language
	Be familiar with and be able to use:
• equal to
• not equal to
• less than
• greater than
• less than or equal to
• greater than or equal to.
Students should be able to use these operators within their own programs and be able to interpret them when used within algorithms. Note that different languages may use different symbols to represent these operators. In assessment material we will use the following
symbols: =, ≠, <, >, ≤, ≥

	
	103 & 104
	102 & 103

	6
	3.2.5 Boolean operations in a programming language
	Be familiar with and be able to use:
• NOT
• AND
• OR.
Students should be able to use these operators, and combinations of these operators, within for iterative and selection structures

	
	
	102 & 103

	7
	3.2.6 Data structures
	Understand the concept of data structures.
	Use arrays (or equivalent) in the design of
solutions to simple problems. Use records (or equivalent) in the design of solutions to simple problems
	
	103 & 104

	8
	3.2.7 Input/output and file handling
	Be able to obtain user input from the keyboard Be able to output data and information from a program to the computer display. Be able to read/write from/to a text file.
	
	
	103 & 104

	
	3.2.8 String handling operations in a programming language
	Understand and be able to use:
• length
• position
• substring
• concatenation
• convert character to character code
• convert character code to character
• string conversion operations.

	Expected string conversion operations:
• string to integer
• string to real
• integer to string
• real to string.
	
	103 & 104

	
	3.2.9 Random number generation in a programming language
	Be able to use random number generation. Students will be expected to use random
number generation within their computer
programs. An understanding of how pseudorandom numbers are generated is not required.
	
	
	102 & 103

	
	3.2.10 Subroutines (procedures and functions)
	Understand the concept of subroutines.
Explain the advantages of using subroutines in programs.

Describe the use of parameters to pass data within programs. Students should be able to use subroutines that require more than one parameter. Students should be able to describe how data is passed to a subroutine using parameters. Use subroutines that return values to the calling routine. Students should be able to describe how data is passed out of a subroutine using return values
Know that subroutines may declare their own variables, called local variables, and that local variables usually:
• only exist while the subroutine is
executing
• are only accessible within the subroutine

	Know that a subroutine is a named ‘out of line’
block of code that may be executed (called) by
simply writing its name in a program statement

Use local variables and explain why it is good
practice to do so.

	
	103 & 104

	
	3.2.11 Structured programming
	Describe the structured approach to
programming. Students should be able to describe the structured approach including modularised programming, clear, well documented interfaces (local variables, parameters) and return values.
Teachers should be aware that the terms
'arguments' and 'parameters' are sometimes used but in examinable material we will use the term 'parameter' to refer to both of these.

	Explain the advantages of the structured
approach.
	
	102 & 103

	
	3.2.12 Robust and secure programming
	Be able to write simple data validation routines. Students should be able to use data validation techniques to write simple routines that check the validity of data being entered by a user.
The following validation checks are examples of simple data validation routines:
• checking if an entered string has a
minimum length
• checking if a string is empty
• checking if data entered lies within a
given range (eg between 1 and 10).
Be able to write simple authentication routines.

Students should be able to write a simple
authentication routine that uses a username and password. Students will only be required to use plain text usernames and passwords (ie students will not need to encrypt the passwords).

	Be able to select suitable test data that covers
normal (typical), boundary (extreme) and
erroneous data. Be able to justify the choice of test data.
	
	103 & 104

	
	3.2.13 Classification of programming languages
	Know that there are different levels of
programming language:
• low-level language
• high-level language.
Explain the main differences between low-level and high-level languages. Students should understand that most computer programs are written in high-level
languages and be able to explain why this is the case.

Understand that ultimately all programming code written in high-level or assembly languages must be translated into machine code.

Understand that machine code is expressed in binary and is specific to a processor or family of processors.
Understand that there are three common types
of program translator:
• interpreter
• compiler
• assembler.
Explain the main differences between these three types of translator.
Understand when it would be appropriate to use each type of translator.
	Know that machine code and assembly language are considered to be low-level languages and explain the differences between them.

Understand that processors execute machine code and that each type of processor has its own specific machine code instruction set.

Understand that assembly language is often used to develop software for embedded systems and for controlling specific hardware components. Understand that assembly language has a 1:1 correspondence with machine code.

Understand the advantages and disadvantages of low-level language programming compared with high-level language programming.
	
	102 & 103

	
	3.3 Fundamentals of data representation
	Understand the following number bases:
• decimal (base 10)
• binary (base 2)
• hexadecimal (base 16).

Understand that computers use binary to
represent all data and instructions.

	Students should be familiar with the idea that a
bit pattern could represent different types of
data including text, image, sound and integer

Explain why hexadecimal is often used in
computer science.

	
	102 & 103

	
	3.3.2 Converting between number bases
	Understand how binary can be used to
represent whole numbers.

Understand how hexadecimal can be used to
represent whole numbers.

	Be able to convert in both directions between:
• binary and decimal
• binary and hexadecimal
• decimal and hexadecimal.

The following equivalent maximum values will
be used:
• decimal: 255
• binary: 1111 1111
• hexadecimal: FF
	
	103 & 104

	
	3.3.3 Units of information
	Know that:
• a bit is the fundamental unit of information
• a byte is a group of 8 bits.
	Students might benefit from knowing that
historically the terms kilobyte, megabyte, etc
have often been used to represent powers of 2.
The SI units of kilo, mega and so forth refer to
values based on powers of 10. When referring
to powers of 2 the terms kibi, mebi and so forth
would normally be used but students do not
need to know these.
	
	103 & 104

	
	
	Know that quantities of bytes can be described using prefixes. Know the names, symbols and corresponding
values for the decimal prefixes:
• kilo, 1 kB is 1,000 bytes
• mega, 1 MB is 1,000 kilobytes
• giga, 1 GB is 1,000 Megabytes
• tera, 1 TB is 1,000 Gigabytes.
	
	
	102 & 103

	
	3.3.4 Binary arithmetic
	Be able to add together up to three binary numbers. Students will need to be able to add together up to three binary numbers using a maximum of 8 bits per number.
Students will only be expected to add together a maximum of three 1s in a single column. Answers will be a maximum of 8 bits in length and will not involve carrying beyond the eight bits.
	Be able to apply a binary shift to a binary number. Students will be expected to use a maximum of
8 bits.

Students will be expected to understand and
use only a logical binary shift.

Students will not need to understand or use
fractional representations.
	
	102 & 103

	
	
	Binary shifts can be used to perform simple multiplication/division by powers of 2.
	Describe situations where binary shifts can be
used.
	
	103 & 104

	
	3.3.5 Character encoding
	Understand what a character set is and be able to describe the following character encoding methods:
• 7-bit ASCII
• Unicode.
	Students should be able to use a given
character encoding table to:
• convert characters to character codes
• convert character codes to characters.
	
	102 & 103

	
	
	Understand that character codes are commonly grouped and run in sequence within encoding tables.
	Students should know that character codes are
grouped and that they run in sequence. For
example in ASCII ‘A’ is coded as 65, ‘B’ as 66,
and so on, meaning that the codes for the other
capital letters can be calculated once the code
for ‘A’ is known. This pattern also applies to
other groupings such as lower case letters and
digits.
	
	103 & 104

	
	
	Describe the purpose of Unicode and the
advantages of Unicode over ASCII.
Know that Unicode uses the same codes as
ASCII up to 127.
	Students should be able to explain the need for
data representation of different alphabets and
of special symbols allowing a far greater range
of characters.
It is not necessary to be familiar with UTF-8,
UTF-16 or other different versions of Unicode.
	
	103 & 104

	
	3.3.6 Representing images
	Understand what a pixel is and be able to
describe how pixels relate to an image and the way images are displayed. Students should know that the term pixel is short for Picture Element. A pixel is a single point in a graphical image.
VDUs display pictures by dividing the display screen into thousands (or millions) of pixels, arranged into rows and columns.
	Calculate bitmap image file sizes based on the
number of pixels and colour depth. Convert binary data into a black and white image. Convert a black and white image into binary data.
	
	102 & 103

	
	
	Describe the following for bitmaps:
• size in pixels
• colour depth.
Know that the size of a bitmap image in pixels (width x height) is known as the image resolution.
	
	
	102 & 103

	
	
	Describe how a bitmap represents an image
using pixels and colour depth. Describe using examples how the number of pixels and colour depth can affect the file size
of a bitmap image.
	
	
	103 & 104

	
	3.3.7 Representing sound
	Understand that sound is analogue and that it must be converted to a digital form for storage and processing in a computer.
	Understand that sound waves are sampled to create the digital version of sound.
	
	102 & 103

	
	
	Describe the digital representation of sound in
terms of:
• sampling rate
• sample resolution.
	Describe the digital representation of sound in
terms of:
• sampling rate
• sample resolution.
	
	103 & 104

	
	3.3.8 Data compression
	Be able to calculate the number of bits required to store a piece of data compressed using Huffman coding.
Be able to calculate the number of bits required to store a piece of uncompressed data in ASCII.
	Explain what data compression is. Understand why data may be compressed and that there are different ways to compress data.
	
	102 & 103

	
	
	Represent data in RLE frequency/data pairs. Students could be given a bitmap
representation and they would be expected to show the frequency and value pairs for each row,
eg 0000011100000011
would become 5 0 3 1 6 0 2 1.
	Explain how data can be compressed using Huffman coding.

Be able to interpret/create Huffman trees. Explain how data can be compressed using run length encoding (RLE).
	
	103 & 104

	
	3.4.1 Hardware and software
	Define the terms hardware and software and understand the relationship between them.
	
	
	102 & 103

	
	3.4.2 Boolean logic
	Construct truth tables for the following logic
gates:
• NOT
• AND
• OR.
	Construct truth tables for simple logic circuits.
Interpret the results of simple truth tables. Create, modify and interpret simple logic circuit diagrams.
	
	102 & 103

	
	3.4.3 Software classification
	Explain what is meant by:
• system software
• application software.
Give examples of both types of software
	
	
	102 & 103

	
	
	Understand the need for, and functions of, operating systems (OS) and utility programs.

	Understand that the OS handles management
of the:
• processor(s)
• memory
• I/O devices
• applications
• security.
	
	102 & 103

	
	3.4.4 Systems architecture
	Explain the Von Neumann architecture.
	Explain the role and operation of main memory
and the following major components of a central
processing unit (CPU):
• arithmetic logic unit
• control unit
• clock
• bus.
	
	103 & 104

	
	
	Understand and explain the Fetch-Execute
cycle. The CPU continuously reads instructions stored in main memory and executes them as required:
• fetch: the next instruction is fetched to the CPU from main memory
• decode: the instruction is decoded to work out what it is
• execute: the instruction is executed
(carried out). This may include reading/
writing from/to main memory.
	Explain the effect of the following on the
performance of the CPU:
• clock speed
• number of processor cores
• cache size
• cache type.
	
	103 & 104

	
	
	Understand the differences between main
memory and secondary storage.

Understand the differences between RAM and ROM.
	Understand why secondary storage is required. Be aware of different types of secondary storage (solid state, optical and magnetic). Explain the operation of solid state, optical and magnetic storage. Discuss the advantages and disadvantages of solid state, optical and magnetic storage.
	
	103 & 104

	
	
	Explain the term 'cloud storage'. Explain the advantages and disadvantages of
cloud storage when compared to local storage.
	Understand the term 'embedded system' and explain how an embedded system differs from a non-embedded system.
	
	103 & 104

	
	3.5 Fundamentals of computer networks
	Define what a computer network is.
Discuss the benefits and risks of computer networks.
	Explain the following common network
topologies:
• star
• bus.
	
	102 & 103

	
	
	Describe the main types of computer network including:
• Personal Area Network (PAN)
• Local Area Network (LAN)
• Wide Area Network (WAN).

	Define the term‘network protocol’.
	
	102 & 103

	
	
	Understand that networks can be wired or
wireless.

Discuss the benefits and risks of wireless networks as opposed to wired networks.
	Explain the purpose and use of common
network protocols including:
• Ethernet
• Wi-Fi
• TCP (Transmission Control Protocol)
• UDP (User Datagram Protocol)
• IP (Internet Protocol)
• HTTP (Hypertext Transfer Protocol)
• HTTPS (Hypertext Transfer Protocol
Secure)
• FTP (File Transfer Protocol)
• email protocols:
• SMTP (Simple Mail Transfer Protocol)
• IMAP (Internet Message Access
Protocol).
	
	102 & 103

103 & 104

	
	
	Understand the need for, and importance of, network security.
	Explain the following methods of network
security:
• authentication
• encryption
• firewall
• MAC address filtering.
	
	102 & 103

	
	
	Describe the 4 layer TCP/IP model:
• application layer
• transport layer
• internet layer
• link layer.

	Understand that the HTTP, HTTPS, SMTP, IMAP and FTP protocols operate at the application layer. Understand that the TCP and UDP protocols operate at the transport layer. Understand that the IP protocol operates at the internet layer.
	
	103 & 104

	
	3.6 Fundamentals of cyber security
	Be able to define the term cyber security and be able to describe the main purposes of cyber security.
	Understand and be able to explain the following
cyber security threats:
• social engineering techniques
• malicious code
• weak and default passwords
• misconfigured access rights
• removable media
• unpatched and/or outdated software.
	
	102 & 103

	
	
	Explain what penetration testing is and what it is used for.
	
	
	102 & 103

	
	3.6.1.1 Social engineering
	Define the term social engineering.
Describe what social engineering is and how it can be protected against.
Explain the following forms of social
engineering:
• blagging (pretexting)
• phishing
• pharming
• shouldering (or shoulder surfing).
	
	
	102 & 103

	
	3.6.1.2 Malicious code
	Define the term 'malware'. Describe what malware is and how it can be protected against.

Describe the following forms of malware:
• computer virus
• trojan
• spyware
• adware.
	
	
	102 & 103

	
	3.6.2 Methods to detect and prevent cyber security threats
	Understand and be able to explain the following security measures:
• biometric measures (particularly for
mobile devices)
• password systems
• CAPTCHA (or similar)
• using email confirmations to confirm a
user’s identity
• automatic software updates.
	
	
	103 & 104

	
	3.7 Ethical, legal and environmental impacts of digital
technology on wider society, including issues of privacy
	Explain the current ethical, legal and
environmental impacts and risks of digital technology on society. Where data privacy issues arise these should be considered.
	
	
	103 & 104

	[image:]
	[image:]
	[image:]

image1.png
- x
o B https://www.gov.uk ent/publ P - @& ¢ [Computer science: grade d.

Guidance

Computer science: grade descriptors for

GCSEsgraded9to1

Updated 6 September 2017

Contents 1. Grade 8

1. Grade8
2. Grade5
3. Grade2

1.1 To achieve grade 8 candidates will be able to:

+ demonstrate relevant and comprehensive knowledge and understanding of
fundamental concepts and principles including digital systems and societal impacts

« effectively apply fundamental concepts, principles and mathematical skills, using
sustained analytical, logical and evaluative computational thinking, to a wide range
of complex problems

« develop and refine a complete solution that meets the requirements of a substantial
problem

image2.png
°]t/ o gov.uk/govermment publicaions/gra O = @ & || [Computerscence grade ... x | ©

U1 LUNIPIEA pruwtenns

« develop and refine a complete solution that meets the requirements of a substantial
problem

2.Grade 5

2.1 To achieve grade 5 candidates will be able to:

+ demonstrate mostly accurate and appropriate knowledge and understanding of
fundamental concepts and principles including digital systems and societal impacts

« appropriately apply fundamental concepts, principles and mathematical skills, using
analytical, logical and evaluative computational thinking, to a range of problems

+ produce a working solution that meets most requirements of a substantial problem

3.Grade 2

T Contents

image3.png
e itps v gov.ak/govermment/publcations/grs 0 ~ @ G || B Computer scencesgrade . |1
TG a et CO1ICEPLS a1 PrITGIPLES MCUGIIY GIgILal SYSLETTS diiu SUCTeLaLITpAGtS

« appropriately apply fundamental concepts, principles and mathematical skills, using
analytical, logical and evaluative computational thinking, to a range of problems

« produce a working solution that meets most requirements of a substantial problem

3.Grade 2

3.1 To achieve grade 2 candidates will be able to:

demonstrate limited knowledge and understanding of fundamental concepts and
principles including digital systems and societal impacts

apply fundamental concepts, principles and mathematical skills, using basic
analytical and logical computational thinking, to straightforward problems with
limited accuracy

produce a partially working solution that meets some requirements of a substantial
problem

T Contents

Is this page useful? Yes No Is there anything wrong with this page?

B @ e L K

