Example: 240 is 200 to the nearest hundred.

Kound these numbers to the nearest whole hundred:

1. $240 \square$
2. 270

3. 210

4. 280

5. 230

6. 290

7. $260 \square$
8. 220

9. 250

Name	Number of tokens	Rounded number
Alexis	155	
Beth	126	
Dan	241	
Elisa	388	
Kyle	505	
Marc	218	

1. There were 416 passengers on the plane flying from Glasgow airport to New York City. Round this to the nearest 10 \square
2. Lukas measures the length of his bedroom, it was 372 cm .

Round this to the nearest 10 \square
3. There were 378 fans at the Manchester United Cup final game.

Round this to the nearest 10 \square
4. When Brodie was born he measured 57 cm in length.

Round his length to the nearest 10 cm . \square
5. Callum has 248 stamps in his collection.

Round this to the nearest 100 \square

1. The local newspaper, The Advertiser, sold 372 copies. Round this to the nearest $100 \square$
2. 638 fans bought tickets for the Six Nations rugby match at Murrayfield Stadium.

Round this to the nearest 100 \square
3. 693 blue cars drove over the Erskine Bridge during a recent traffic survey. 564 red cars were also counted.

Round the number of blue cars to the nearest 100 \square

Round the number of red cars to the nearest 100 \square

Round the number of blue and red cars to the nearest 100 \square

There has been a breach in Internet security and we need you to help protect the data before it is stolen! The IP numbers attached to this document have fallen into the hands of despicable criminals. Soon, they will have worked out the patterns to unlock the codes and steal important and sensitive information. Can you help us find the codes to lock the files before they access them?

To find the code to lock the files, you must round the IP numbers to the nearest 10,100 and 1000. Good luck, Agent!

E.g. Mr J. Cheng IP Address: 5735 Code: $5740, ~ 5700, ~$ 5000	Mrs P. Patel IP Address: 827 Code:	Miss L. Smith IP Address: 2816 Code:	Mr M. Yung IP Address: 787 Code:
Mr M. Stubbs IP Address: 528 Code:	Ms M. Fritz IP Address: 2719 Code:	Mr H. Hansson IP Address: 871 Code:	Ms B. Eden-Green IP Address: 1736 Code:
Mrs L. Tunnicliffe IP Address: 8464 Code:	Mr R. Petrov IP Address: 4856 Code:	Mrs A. Diarra IP Address: 8721 Code:	Miss P. Adebayo IP Address: 992 Code:

1. Which of these is the best approximation for $609+298$?
a. $610+290$
b. $700+300$
c. $600+300$
d. $610+300$
2. Which of these is the best approximation for 545-256 ?
a. 500-200
b. 550-260
c. 550-200
d. 600-300
3. Which of these is the best approximation for 22×47 ?
a. 10×40
b. 20×50
c. 10×50
d. 20×40
4. Which of these is the best approximation for $154 \div 39$?
a. $160 \div 40$
b. $150 \div 30$
c. $150 \div 40$
d. $160 \div 30$
