LO To use multiplication and division for inverse.

Use the array to complete the number sentences.

$$
3 \times 4=\square
$$

$$
4 \times 3=
$$

\qquad
$\square \div 3=\square$
$\square \div 4=\square$

The number pieces represent $5 \times$ \qquad $=$ \qquad

If each hole is worth ten, what do the pieces represent?

What does \square represent?

$$
\begin{array}{r}
2 \times \because=24 \\
\because \times 2=24 \\
24 \div \because=2 \\
24 \div 2=?
\end{array}
$$

There are 56 legs.
How many spiders are there?

LO To use multiplication and division for inverse.

If we know $2 \times 6=12$, we also know $2 \times 60=120$
Use this to complete the fact family.

$2 \times 60=120$	$\square \times \square=\square$
$\square \div \square=\square$	$\square \div \square=\square$

Complete the fact families for the calculations.

$$
\begin{aligned}
& 3 \times 30=\square \\
& \square=4 \times 80 \\
& 160 \div 2=\square
\end{aligned}
$$

How close can you get to 100 ? Use each digit card once in the multiplication.
Try lots of different ways.

The number pieces represent $5 \times$ \qquad $=$ \qquad

If each hole is worth ten, what do the pieces represent?

Find the incorrect number in these sequences.
a) $4,8,12,14,20,24,28,32$.
b) $64,56,46,40,32,24,16,8$.
c) $6,9,12,16,18,21,24$.

LO To use multiplication and division for inverse.

Practise performing inverse operations by getting back to the first number. The first one has been done for you:
a $20 \square 5=4 \square \times 5$
b 35

c 64

d 72

e 54
 $=54$
f 18

Amir partitioned a number to help him divide by 8

Some of his working out has been covered with paint.

What number could Amir have started with?

Compare the statements using $<,>$ or $=$

$$
\begin{aligned}
& 48 \div 4 \bigcirc 36 \div 3 \\
& 52 \div 4 \bigcirc 42 \div 3 \\
& 60 \div 3 \bigcirc 60 \div 4
\end{aligned}
$$

How many squares can you make with 13 lollipop sticks?
There are \qquad lollipop sticks.
There are \qquad groups of 4
There is \qquad lollipop stick remaining.

$13 \div 4=$ \qquad remainder \qquad
Use this method to see how many triangles you can make with 38 lollipop sticks.

Tommy uses repeated subtraction to solve $31 \div 4$

$$
31 \div 4=7 \text { r } 3
$$

Use Tommy's method to solve 38 divided by 3
Use your known number facts. $1 \times 3,5 \times 3,10 \times 3$

