Maths Knowledge Organiser

Sequences

	A 11	0.5.0.44 (1)
Linear Sequence	A number pattern with a common difference.	2, 5, 8, 11 is a linear sequence
Term	Each value in a sequence is called a term.	In the sequence 2, 5, 8, 11, 8 is the third term of
		the sequence.
Term-to-term rule	A rule which allows you to find the next term in a sequence	First term is 2. Term-to-term rule is 'add 3'
	if you know the previous term.	
		Sequence is: 2, 5, 8, 11
nth term	A rule which allows you to calculate the term that is in the	nth term is $3n-1$
	nth position of the sequence.	
		The 100th term is $3 \times 100 - 1 = 299$
	Also known as the 'position-to-term' rule.	
	n refers to the position of a term in a sequence.	
Finding the nth term	1. Find the difference.	Find the nth term of: 3, 7, 11, 15
of a linear sequence	2. Multiply that by n.	
	3. Substitute $n = 1$ to find out what number you need to	1. Difference is +4
	add or subtract to get the first number in the	2. Start with 4n
	sequence.	3. $4 \times 1 = 4$, so we need to subtract 1 to get 3.
		nth term = 4n - 1
Fibonacci type	A sequence where the next number is found by adding up	The Fibonacci sequence is:
sequences	the previous two terms	1,1,2,3,5,8,13,21,34
'	· ·	
		An example of a Fibonacci-type sequence is:
		4, 7, 11, 18, 29
Geometric Sequence	A sequence of numbers where each term is found by	An example of a geometric sequence is:
	multiplying the previous one by a number called the	2, 10, 50, 250
	common ratio, r.	The common ratio is 5
		Another example of a geometric sequence is:
		81, -27, 9, -3, 1
		The common ratio is $-\frac{1}{2}$
Our docking Commercia	A	2 6 12 20 30 42
Quadratic Sequence	A sequence of numbers where the second difference is	
	constant.	+4 +6 +8 +10 +12
	A dti	
	A quadratic sequence will have a n^2 term.	+2 +2 +2 +2
Triangular numbers	The sequence which comes from a pattern of dots that form	1 3 6 10
	a triangle.	1 3 6 10
	1, 3, 6, 10, 15, 21	
		0 0 0 0
	1	1