Fractions Wall

							1							
<u>1</u> 2					<u>1</u> 2									
<u>1</u> <u>3</u>			<u>1</u> <u>3</u>					<u>1</u> <u>3</u>						
<u>1</u> 4				<u>1</u> 4				<u>1</u> 4				<u>1</u> 4		
<u>1</u> 5			<u>1</u> 5		-	<u>1</u> 5			<u>1</u> 5			<u>1</u> 5		
$\frac{1}{6}$			<u>1</u> 6	<u>1</u> 6			<u>1</u> 6			<u>1</u> 6	$\frac{1}{6} \qquad \frac{1}{6}$			
<u>1</u> 7			<u>1</u> 7		$\frac{1}{7} \qquad \frac{1}{7}$		<u>1</u> 7	<u>1</u> 7		<u>1</u> 7			<u>1</u> 7	
<u>1</u> 8		-	<u>1</u> 8		<u>1</u> 8		<u>1</u> 8			$\frac{1}{8}$		<u>1</u> 8	1 8	<u>-</u>
<u>1</u> 9		<u>1</u> 9	$\frac{1}{9} \qquad \frac{1}{9}$		<u>1</u> 9	-	$\frac{1}{9}$ $\frac{1}{9}$. <u>1</u> 9			<u>1</u> 9		<u>1</u> 9
$\frac{1}{10}$	1	1 10		1 10	110	$\frac{1}{10}$	$\frac{1}{10}$)	$\frac{1}{10}$		$\frac{1}{10}$	$\frac{1}{10}$		1 10
1 11	$\frac{1}{11}$		$\frac{1}{11}$	1 1	1 1	1 1		$\frac{1}{11}$		<u>1</u> 11	1 11	$\frac{1}{11}$		1 11
$\begin{array}{c c} \frac{1}{12} & \frac{1}{12} \end{array}$			1 12	1 12	1 12	1 12	1 12		2	$\frac{1}{12}$	1 12	1	<u>1</u> 2	1 12

Use your fraction wall/imagine slices of pizza. They can cover the same space/ amount even if some are different sizes. You can join them together for example.

Remember to always multiply or divide both the numerator and the denominator by the same amount!

Bronze

Silver

x 4 (2x4 = 8)	$\frac{1}{2} = \frac{1}{8}$ $\frac{1}{6} = \frac{2}{1}$	$\frac{2}{3} = \frac{1}{12}$ $\frac{1}{4} = \frac{3}{12}$
	$\frac{3}{4} = \frac{10}{8}$ $\frac{5}{8} = \frac{10}{8}$	$\frac{5}{6} = \frac{1}{12}$ $\frac{1}{3} = \frac{3}{12}$
	$\frac{1}{4} = \frac{1}{16}$ $\frac{4}{5} = \frac{12}{16}$	$\frac{2}{5} = \frac{10}{10}$ $\frac{3}{10} = \frac{9}{10}$
	$\frac{1}{3} = \frac{1}{6}$ $\frac{1}{8} = \frac{3}{6}$	$\frac{7}{8} = \frac{16}{16}$ $\frac{3}{4} = \frac{9}{16}$
	$\frac{4}{6} = \frac{1}{3}$ $\frac{8}{10} = \frac{4}{10}$	$\frac{2}{8} = \frac{1}{4}$ $\frac{9}{18} = \frac{1}{1}$

Silver Answers

$\frac{1}{2} = \frac{4}{2}$	$\frac{1}{4} = \frac{2}{12}$
2 8	0 1Z
$\frac{2}{3} = \frac{6}{12}$	$\frac{1}{4} = \frac{3}{12}$
3 _ 6	5 _ 10
4 8	8 16
<u>5</u> <u>10</u>	1 3
6 12	3 9
1 4	4 12
$\frac{1}{4} = \frac{1}{16}$	5 = 15
2 4	3 9
5 10	10 - 30
1 2	1 3
3 6	8 24
7 14	3 9
8 16	$\frac{1}{4} = \frac{12}{12}$
4 2	8 4
6 3	10 = 5
2 1	9 1
<u> </u>	18 2

Gold

Gold Answers

- . 2 parts shaded; 4 parts shaded
- . Any 6 parts. $\frac{2}{7} = \frac{6}{21}$
- . 2
- . A and D match; B and C match

- . 2 parts shaded; 4 parts shaded
- . Any 4 parts. $\frac{2}{10} = \frac{4}{20}$
- . 6
- . A and C match; B and D match

Gold Challenge

Sarah has a packet of balloons.

The contents of the packet are

5 red balloons

5 blue balloons

10 yellow balloons

Sarah says,

'One-quarter of the balloons are red'.

Is Sarah correct? Circle **Yes** or **No**.

Explain how you know.